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Abstract

Motivated by the question of how a principal can maximize its utility in repeated interactions
with a learning agent, we study repeated games between an principal and an agent employing fic-
titious play. Prior work by Brown et al. (2024b) has shown that computing or even approximating
the global Stackelberg value in similar settings can require an exponential number of rounds in
the size of the agent’s action space, making it computationally intractable. In contrast, we shift
focus to the computation of local Stackelberg equilibria and introduce an algorithm that, within
the smoothed analysis framework, constitutes a Polynomial Time Approximation Scheme (PTAS)
for finding an ε-approximate local Stackelberg equilibrium. Notably, the algorithm’s runtime is
polynomial in the size of the agent’s action space yet exponential in (1/ε)—a dependency we
prove to be unavoidable.

1 Introduction

In repeated games, agents often have incomplete information about the game and resort to using
a learning algorithm to optimize their utility over time. We consider a repeated game between a
strategic player, referred to as the principal, and a player who follows a learning algorithm, referred
to as the agent. When the principal anticipates the learning algorithm used by the agent, how
should she adjust her strategy to maximize her utility over time? The answer depends on both the
information available to the principal and the specific learning dynamics of the agent.

In this paper, we study the setting where the principal has no knowledge of the agent’s utility
function, and the agent employs a mean-based learning algorithm. A mean-based learner is a learning
algorithm that selects its strategy based on the empirical distribution of the principal’s past actions.
Specifically, at each round, the learner plays an approximate best response to the time-averaged
history of the principal’s play. This class includes fundamental algorithms such as Fictitious Play,
Follow the Regularized/Perturbed Leader, and Multiplicative Weights Update. In particular, we
focus on Fictitious Play, where the agent exactly best responds to the empirical distribution of the
principal’s actions up to the current round.

Given that the agent is a mean-based learner, what should the principal aim to achieve? A natural
goal is to devise a strategy that maximizes her cumulative utility over time, among all possible
strategies. This objective has been considered in Mechanism Design (Braverman et al., 2018; Cai
et al., 2023; Rubinstein and Zhao, 2024), Contract Design (Guruganesh et al., 2024), Information
Design (Lin and Chen, 2024), and general games (Deng et al., 2019; Mansour et al., 2022; Brown
et al., 2024b). However, even when the principal has full knowledge of the agent’s utility function,
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computing the optimal long-term strategy is NP-hard in general games (Assos et al., 2024, 2025).

An alternative benchmark is the Stackelberg equilibrium of the one-shot game. If the principal knows
the agent’s utility function, she can compute a Stackelberg strategy in polynomial time and play it
repeatedly. Since a mean-based learner best responds to the empirical distribution of the principal’s
past actions, this ensures that the agent selects the Stackelberg best response in each round, thereby
approximately yielding the one-shot Stackelberg value to the principal in each round. When the
principal does not have access to the agent’s utility function, she could approximate the Stackelberg
equilibrium using a best-response oracle—an oracle that, given a mixed strategy of the principal,
returns the agent’s best response Letchford et al. (2009); Peng et al. (2019); Blum et al. (2014). If the
only information available about the agent comes from observing its decisions over time, the principal
may attempt to influence the agent’s learning process to induce best responses. This approach
has been analyzed in various settings Haghtalab et al. (2022, 2024). However, for the fundamental
class of mean-based learners, reducing the problem to learning via a best-response oracle introduces
an exponential overhead. That is due to the fact that mean-based learners remember the whole
history of play, hence they cannot be easily manipulated to produce best responses. In fact, Brown
et al. (2024b) established that approximating the Stackelberg equilibrium in this setting requires
exponential time.

1.1 Our contribution

The impossibility result of Brown et al. (2024b) raises the question of what can be learned from
interactions with a mean-based learning agent when the optimizer lacks direct access to the agent’s
utility function. A key challenge arises from the fact that mean-based learners are slow to forget—they
adjust their strategy based on the cumulative history of play rather than responding to individual
queries. As a result, querying their best response to widely varying mixed strategies is infeasible,
since shifting the empirical distribution of past plays requires many rounds. This makes traditional
approaches based on best-response oracles impractical.

Given these constraints, the optimizer can only infer information from how the agent gradually
adapts its strategy over time. Consequently, the optimizer’s best option is to perform a local search
by making small adjustments to its historical play—modifying the empirical distribution of past
actions incrementally—and observing the agent’s response. Through this process, the optimizer can
progressively optimize its utility. A natural target for such an optimization process is an approximate
local equilibrium, where the optimizer cannot significantly improve its utility through small deviations
in its historical play. In this work, we study the problem of efficiently finding an ϵ-approximate local
equilibrium, leveraging the structure of mean-based learning dynamics to design an algorithm for
this setting.

We present a PTAS: an algorithm whose iteration complexity is exponential in 1/ϵ but polynomial
in the size of the game, with each iteration running in polynomial time. Furthermore, we prove that
this exponential dependence on 1/ϵ is unavoidable. To achieve our runtime guarantees, we impose
a few natural assumptions to prevent adversarial instances and to ensures that the vectors in the
learner’s utility matrix are in general position.

Technical Contributions. Optimizing against a mean-based learner introduces several challenges:

• Local versus Global Queries: Prior work reduced the problem of finding an approximate
Stackelberg equilibrium via interactions with a learner to a query-based approach: given an
optimizer’s mixed strategy x ∈ ∆(A), one can query the learner’s (exact or approximate) best
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response y ∈ BR(x). However, for mean-based learners, queries are expensive if the mixed
strategies differ substantially. To query BR(x) and then BR(x′) when x and x′ are far apart, the
optimizer must play enough rounds to adjust the average history from one strategy to the other.
Our key insight is to design an algorithm that only makes local changes—ensuring that successive
queries remain close—thus circumventing the high cost associated with large shifts in the history.
• Discontinuities in the Objective: One might naturally attempt to apply standard local-

search methods to our problem since our algorithm operates via local steps. However, the
optimization target is not globally continuous: the learner’s best response can change abruptly as
the optimizer’s mixed strategy crosses the boundaries between different regions of ∆(A). Within
each such best-response region—which is always a polytope—the principal’s utility is continuous,
but the overall function is piecewise continuous. Our algorithm addresses this challenge by
detecting the hyperplanes that separate these best-response polytopes and restricting the search
to the regions that yield higher utility.
• Searching across High-Dimensional Polytope Boundaries: Our algorithm operates locally

within polytopes, shifting from one to another upon reaching a local optimum within the current
region. Once an x ∈ ∆(A) is found that locally maximizes the optimizer’s utility in a best-
response polytope, the algorithm must determine whether any neighboring polytopes offer a
higher utility. Detecting all adjacent regions is challenging because these polytopes reside in
R|A|−1, and in high dimensions some may have volumes that are exponentially small relative
to the dimension—even within a small neighborhood of x. We overcome this by sequentially
detecting neighboring polytopes and, at each step, restricting the search to the intersection of all
previously discovered regions. This gradual reduction in the search space’s effective dimension
avoids the pitfall of runtimes that scale inversely with the volume of the smallest polytope. In
contrast to prior query-based algorithms for finding global Stackelberg equilibria—which may
incur exponential runtimes due to this volume dependence—we demonstrate that focusing on local
Stackelberg equilibria sidesteps this exponential barrier.

Related Work. Our work relates to many areas of research in learning the Stackelberg value and
other game-theoretic benchmark in games. We provide a detailed discussion in Appendix A.

2 Model

In this paper, we consider a 2-player game between a principal and an agent. Let A be the action
space of the principal and B be the action space of the agent. We assume that both action spaces
are finite with size |A| = m and |B| = n, respectively.

For a pair of pure strategies (a, b) ∈ A× B, we use U1(a, b) and U2(a, b) to denote the utility of the
principal and the agent, where we assume that all utilities are between [0, 1]. These utility functions
can also be interpreted as matrices U1, U2 ∈ [0, 1]m×n.

When both players employ mixed strategies, i.e. distributions x ∈ ∆(A) and y ∈ ∆(B) over their
action spaces, their expected utilities are given by

Ui(x,y) = E
a∼x,b∼y

[Ui(a, b)] = xTUi y, i ∈ {1, 2}.

Repeated Games. We consider repeated interactions between the principal and the agent, where
the stage game (U1, U2) is repeated for T rounds. At the beginning of the interactions, both players
know their own utility matrix Ui but do not know the utility matrix U−i of their opponent.
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At each round t ∈ [T ], the principal and agent simultaneously select strategies x(t) ∈ ∆(A) and
y(t) ∈ ∆(B) respectively. Principal observes y(t), and gains utility U1(x

(t),y(t)). Similarly, the agent
observes x(t), and gains utility U2(x

(t),y(t))

2.1 Principal’s Benchmarks

To measure the principal’s performance in repeated games, many previous works (e.g. (Haghtalab
et al., 2022, 2024; Deng et al., 2019; Blum et al., 2014)) have focused on the Stackelberg value of the
stage game, which we introduce below.

The Stackelberg Value. In the stage game (U1, U2), the Stackelberg value is a benchmark for
the principal’s optimal utility when she has full knowledge of the agent’s utility function and the
ability to commit to a strategy. Formally, it is defined as the solution to the following optimization
problem:

StackVal ≜ max
x⋆∈∆(A)

max
y⋆∈BR(x⋆)

U1(x
⋆, y⋆),

where BR : ∆(A) → 2B is the agent’s best-response function that maps from a principal’s mixed
strategy to a set of pure strategies in B that maximizes the agent utility. Specifically, for all
x ∈ ∆(A),

BR(x) ≜ argmax
b∈B

U2(x, y) = {b ∈ B : U2(x, b) ≥ U2(x, y) for all y ∈ ∆(B)}.

The Stackelberg value represents the global optimal utility that can be achieved against rational
agents. However, computing it efficiently is intractable against mean-based agent, as shown by Brown
et al. (2024b). In this paper, we study the local Stackelberg equilibria, which we show can be achieved
efficiently.

Local Stackelberg Equilibria (LSE). A local Stackelberg strategy is one where no small local
deviation can significantly improve the principal’s utility when the agent best responds. This
definition serves as the discrete analogue of the differential Stackelberg equilibria studied in (Fiez
et al., 2020).

Definition 2.1 ((ε, δ)-Approximate Local Stackelberg Strategy). A principal’s strategy x ∈ ∆(A) is
an (ε, δ)-Approximate Local Stackelberg Strategy if

∀x′ ∈ B1(x; δ), sup
y′∈BR(x′)

U1(x
′, y′) ≤ sup

y∈BR(x)
U1(x, y) + εδ,

where B1(x, δ) denote the ℓ1 ball of radius δ around x, i.e., the set of strategies with ∥x′ − x∥1 ≤ δ.

We remark that in settings with smooth utility functions, approximate local optima are often
characterized by small gradients. However, when the principal’s utility function is non-continuous
due to the agent’s best-response behavior, a gradient-based characterization is no longer appropriate.
Instead, our definition provides a discrete analogue that captures the same intuition—ensuring that
small perturbations in the principal’s strategy do not lead to significantly higher payoffs.

We include a comparison of the local Stackelberg benchmark to other benchmarks in Appendix E.
In general, the local Stackelberg is a weaker benchmark compared to the global Stackelberg, albeit
a tractable one. However, there are special cases, where the local Stackelberg is equivalent to the
the global Stackelberg in terms of the principal’s utility. This is the case in a broad and commonly
studied class of Stackelberg games — Stackelberg security games as we show in Proposition E.3.
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2.2 Agent’s algorithm

In this paper, we assume that the agent selects their actions according the a learning algorithm
termed Fictitious Play, defined as follows:

Definition 2.2 (Fictitious play). An agent follows the fictitious play algorithm if, at each round t,
it chooses a strategy from the set of best responses to the principal’s average strategy during the first
t− 1 rounds. Formally, let the principal’s average past strategy be x(t−1) =

∑t−1
s=1 x

(s)/(t− 1), then
the agent’s strategy at round t satisfies y(t) ∈ BR(x(t−1)).

In the above definition, the pure strategy y(t) ∈ B can represent either a determinsitic action
(where the agent plays a pure strategy), or a randomized action drawn from a mixed strategy
y(t) ∼ y(t) ∈ ∆(B). In the latter case, the support of the mixed strategy y(t) must be fully
contained in the best response set BR(x(t−1)). We focus on fictitious play agents for the following
two reasons:

• Fictitious play agents exhibit a property of slowly forgetting past interactions, as they update
their strategy based on the average of the principal’s past strategies. This introduces technical
challenges that differ significantly from interactions with myopic best-responding agents who make
decisions only based on recent rounds without any memory.
• Fictitious play serves as a building block for understanding the interactions with a broader class of

mean-based agents (Braverman et al., 2018), which includes many widely-used learning algorithms,
such as Multiplicative Weights Update, Follow the Regularized/Perturbed Leader and ε-greedy.

2.3 Geometric Interpretations of the Principal’s Optimization Problem

In this section, we introduce some additional notations and revisit the geometric properties of the
principal’s optimization problem that will be useful in our algorithms.

For each of the agent’s actions b ∈ B, define the best response polytope to action b as the
set of principal’s mixed strategies that induce best response b, which we denote with Pb ≜
{x ∈ ∆(A) | b ∈ BR(x)} . These subsets are referred to as polytopes because they are characterized
by the intersection of halfspaces:

Pb =
{
x ∈ ∆(A) | ∀b′ ∈ B, U2(x, b)− U2(x, b

′) = ⟨ub − ub′ ,x⟩ ≥ 0
}
,

where ub ∈ Rm represents the agent’s utility vector conditioned on action b, i.e., ub = U2(·, b). We
will also use hb,b′ to denote the hyperplane that separates polytopes Pb and Pb′ , i.e., hb,b′ ≜ ub−ub′ .

Principal’s Optimization Problem. Note that under full information about the polytope
partition, the principal’s Stackelberg value can be equivalently described as the optimal solution
to the following piece-wise linear function: StackVal = maxb∈B maxx∈Pb

U1(x, b), which involves
maximization over all the polytopes Pb. On the other hand, in local Stackelberg equilibria, a strategy
x is locally optimal if no surrounding polytopes achieve a higher principal utility. We define the
notion of (approximately) surrounding polytopes below.

Surrounding Polytopes For a principal’s strategy x ∈ ∆(A), let P(x) denote the subset of
polytopes that contains (surrounds) x: P(x) ≜ {Pb | x ∈ Pb}. Note that P(x) equivalently contains
all polytopes Pb for which b ∈ BR(x) is a best response.
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For a radius ε > 0, let Pε(x) be the polytopes that are within ℓ2 distance ε to x:

Pε(x) ≜ {Pb | dist2(x,Pb) ≤ ε}. (ε-Surrounding Polytopes)

Here, the distance between vector x and set Pb is defined as dist2(x,Pb) ≜ minx′∈Pb
∥x− x′∥2.

2.4 Our Assumptions

In this section, we briefly describe the assumptions we make to derive our results. We provide a
more detailed discussion in Appendix F.

Our first assumption is a standard assumption in previous work on approximating the Stackelberg
value Blum et al. (2014); Letchford et al. (2009); Haghtalab et al. (2022, 2024).

Assumption 2.3 (Distance from Polytope Boundaries). For every polytope Pb, there exists some
strategy x ∈ Pb such that all coordinates of x are lower bounded by Rmin, i.e., x ≥ Rmin · 1.

Assumption F.3 is an arguably weaker condition than the assumption made in previous works as
discussed in Remark F.4. One reason is previous works Blum et al. (2014); Letchford et al. (2009);
Haghtalab et al. (2022, 2024) usually incur a dependency on the volume of the ball, which can be
exponential in the dimension (i.e. the number of principal’s actions). In contrast, our bound only
has a polynomial dependence on 1/Rmin.

The next assumption is that the polytopes and hyperplanes are sufficiently separated from each other.
This assumption is also connected to an assumption on the minimum singular value of constraint
matrices defining the polytopes (Lemma F.5), which we denote by σ. The assumption and connection
to σ is stated formally in Lemma F.5. Here we state it informally as follows:

Assumption 2.4 (Informally: Polytopes/Hyperplanes are Far Apart).

1. For any x ∈ ∆(A), there are at most m polytopes that have distance at most R1 to x.

2. For all b ∈ B and all x ∈ Pb, there are at most m− 1 hyperplanes from that polytope Pb that x
can be close to.

The second assumption above is satisfied with high probability under the smoothed analysis framework
i.e., when the utility functions are perturbed by Gaussian noise. We show this in Appendix D.

3 Algorithm

In this section, we present our main algorithm (Algorithm 1) that finds an approximate Local
Stackelberg equilibrium. Algorithm 1 alternates between the following two main subroutines:

• OptimizeWithinPolytope (Algorithm 2). At a high level, this subroutines finds an approximately
optimal policy constrained to a given polytope.

• SearchForPolytopes (Algorithm 3). When the principal’s search point is near a polytope boundary,
this subroutine identifies all adjacent polytopes in the neighborhood.

Now we discuss the high-level ideas for the two subroutines respectively.

(1) Optimizing within polytopes (More details in Section 3.1). In this subroutine, the
principal aims to compute an εδ-optimal strategy within the current polytope. This problem would
be a linear program if the polytope were fully known. However, because the polytope depends on the
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agent’s private utilities (which are unknown to the principal), the principal must learn this structure
through interactions. To do so, the principal maintains an approximate version of the polytope,
which is iteratively refined as constraints become known.

The approximation to the polytope is learned incrementally by adding new constraints as new
polytopes are encountered. After each update of the constraints, the principal chooses the optimal
strategy among strategies satisfying the current set of constraints. In doing so, the principal either
improves utility or discovers a new constraint that refines the polytope approximation and prompts
a re-optimization. (As shown in Figure 2a.)

(2) Searching for new polytopes (More details in Section 3.2). The SearchForPolytopes
subrountine explores all polytopes within a certain radius around a given point. A key challenge in
this search is that some surrounding polytopes may have volume that is exponentially small in the
number of dimensions, requiring exponential in dimensions number of samples to identify through
random sampling. To efficiently discover these polytopes, SearchForPolytopes employs an iterative
dimension reduction approach. After a subset of polytopes are found, the algorithm restricts its
search to the boundaries these polytopes. This restriction reduces the dimension of the search
space and overcomes the challenge of searching in a high dimensional space. (See Figure 2b for an
illustration.)

ALGORITHM 1: Local Stackelberg Equilibrium
Input: xstart, ε, δ, α, γ
Result: An (ε, δ)-approximate Local Stackelberg equilibrium
// Iterating through the best-response polytopes
for i = 1, . . . , n do

Current average strategy: x ;
Current agent best-response: bi ← BR(x) ;
Update average strategy to x∗i ← OptimizeWithinPolytope(BR(x), ε, δ, α, γ);
Move average strategy x∗

i to be δ close enough to the boundary ;
Find all surrounding polytopes using SearchForPolytopes(x∗i );
if There is a surrounding polytope Pb with U1(x

∗
i , b) ≥ U1(x

∗
i , bi) + ε2

then
Step into polytope b and continue to the next iteration;

end
else

Return (x∗i ,BR(x
∗
i )) is an (ε, δ)-approximate LSE.

end
end

Theorem 3.1 (Main theorem). Under Assumptions F.2 and F.3, with high probability, Algorithm 1
finds an (ε, δ)-approximate Local Stackelberg equilibrium within the following number of iterations:

O
(
poly

(
m,n, 1

Rmin
, log 1

σ

)
· exp

(
1
εδ

))
Although the number of iterations needed for Algorithm 1 to approximate the local Stackelberg
equilibrium is exponential in 1/(εδ), we show in the following theorem that this exponential
dependence is unavoidable. The proof of Theorem C.1 is deferred to Appendix J.5.
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Theorem 3.2. Any algorithm that finds an ϵ-approximate LSE requires Ω(exp(1/ϵ)) steps in the
worst case, even when the algorithm has full knowledge of the agent’s utility function.

Proof sketch of Theorem 3.1. In this proof sketch we will illustrate how we bound the number of
rounds the algorithm takes. In the next sections we will analyze the subroutines of the algorithm
in more detail and analyze their correctness. The correctness of the algorithm will follow from the
correctness of these subroutines.

The main argument to bound the number of rounds our algorithm takes to find an (ε, δ)-approximate
local Stackelberg strategy is that in each round where we improve utility, the principal’s utility
improves by at least some minimum amount. The amount of utility improvement has to necessarily
depend on the round t since the maximum possible change in magnitude of utility at round t is 1/t,
as shown in Remark G.1. This follows from how the average strategy of the principal changes with
the choice of strategies in each round. (We provide details on how our algorithm chooses strategies
to change the average strategy in Appendix G.) We first suppose each improvement to the utility
the algorithm makes has magnitude at least ∆/t, and show that our algorithm terminates within
a bounded number of rounds leveraging the fact that the total possible improvement of utility is
bounded. We will prove a lower bound on ∆ at the end of the proof.

The argument is similar to the convergence analysis of algorithms such as gradient descent in
continuous settings to local optima. However, a key challenge in our setting is that not every step is
an improvement due to the discontinuous (piecewise) nature of the principal’s utility functions. To
deal with this discountinuity, our algorithm also takes non-improvement steps (such as the steps for
constructing polytope boundaries and SearchForPolytopes).

Suppose the set of improvement rounds is TI and the set of other rounds is TN . We establish an
upper bound on |TN | which allows us to still upper bound the iteration complexity of approximating
the local Stackelberg strategy since each non-improvement step decreases utility by at most 1

t . The
total utility improvement is at least

∑
t∈TI

εδ

t
−
∑
t∈TN

1

t
≥

|TN|+|TI|∑
t=|TN|

∆

t
−

|TN|∑
t=1

1

t
≳ ∆ log

|TN|+ |TI|
|TN|2

.

Since utilities are bounded in [0, 1],

=⇒ ∆ log |TN|+|TI|
|TN|2 ≤ 1, |TN|+ |TI| ≤ |TN|2 + exp

(
1

∆

)
.

To complete the bound on the total number of rounds, it suffices to find a lower bound on the
minimum utility improvement quantity ∆ and an upper bound on the number of non-improving
rounds |TN|. We will show in Section 3.1 that ∆ ≥ εδ, in the analysis of OptimizeWithinPolytope
(the subroutine where utility improvement steps are made).

Non-improvement rounds occur to construct boundary hyperplanes when an intended improvement
step takes us outside the polytope. They occur at most n2 times, once to construct easy hyperplane.
And each round includes steps to get close to the boundary via BinarySearch and generating search
vectors to explore nearby polytopes in SearchForPolytopes. The number of such steps |TN| is analyzed
in the analysis of the sub-routines and will turn out to be poly(m,n) exp(1/(εδ)). This results in
the bound of the theorem.
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ALGORITHM 2: OptimizeWithinPolytope

Input: The current polytope b, starting point xstart,
approximation parameter α

The estimated polytope P̂b ← ∆(A);
while P̂b is not empty do

xtarget ← argmaxx∈P̂b
U1(x, b);

if U1(xtarget, b) < U1(xstart, b) + εδ then
Terminate and return xstart;

end
x(t) ← xtarget // This is an improvement step
if y(t) = b′ ̸= b then

x,x′ ← BinarySearch between x̄(t−1) ∈ Pb and
x̄(t) ∈ Pb′ with accuracy α;

Use x,x′ to find approximate hyperplane ĥb,b′ by
calling SearchForPolytopes;

P̂b ← P̂b ∩
{
x : ĥ

T
b,b′x ≥ α

}
;

xstart ← projection of xstart onto S;
end

end

ALGORITHM 3: SearchForPolytopes
Input: Starting point x⋆,

accuracy level α
Ŝ ← {x : 1Tx = 1} (the
constrained search space);
L← {} (the set of hyperplanes
and polytopes discovered so far);

while Ŝ is not empty do
h, b←
FindAHyperplane(x⋆, Ŝ, α);

if h, b is None then
Return L

end
Ŝ ← Ŝ ∩ {x : ⟨h,x⟩ = α};
L← L ∪ {(h, b)} ;
x⋆ ←
projection of x⋆ onto Ŝ;

end

Figure 1: Key algorithms for local Stackelberg equilibria computation: (left) OptimizeWithinPolytope
algorithm for optimizing principal’s utility within a polytope; (right) SearchForPolytopes algorithm
for efficiently discovering polytopes in high-dimensional spaces.
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3.1 Analysis of OptimizeWithinPolytope

In this section we will analyze the correctness of the subroutine OptimizeWithinPolytope. Before we
delve into the analysis of OptimizeWithinPolytope, let us describe its implementation in some more
detail.

When optimizing within a polytope Pb corresponding to action b ∈ B, OptimizeWithinPolytope
maintains an estimate polytope P̂b of the true polytope Pb. P̂b starts of being the space of all
strategies and gets refined as the principal learns more about Pb. The algorithm alters between
improvement steps and searching steps:

• In improvement steps, we move the average strategy x(t) toward the optimizer z = argmaxx∈P̂b
U1(x, b),

which is the optimizer in P̂b. We move toward z only when utility improves significantly. This
guarantees termination via the termination condition

U1(z, b) ≤ U1(x
(t), b) + εδ. (Termination condition)

z might not actually be in Pb and may lead to an average strategy x(t) outside of Pb that can be
detected by y(t) ≠ b as shown in Figure 2a. When this happens, we switch to searching steps and
identify a new direction of improvement if one exists as shown in Figure 2a.
• We enter a phase of searching steps with two consecutive points x(t−1) and x(t) that lie in opposite

sides of some boundary (h) of Pb. We approximate h by ĥ satisfying ∥ĥ− h∥2 ≤ α.
We do this by backtracking from x(t) to x(t−1) and finding a point in between that is α close to
the boundary. We search the polytopes surrounding this point via SearchForPolytopes to construct
ĥ.

This implementation of OptimizeWithinPolytope approximates the optimal strategy within the
polytope of search as stated below.

Proposition 3.3 (Correctness of OptimizeWithinPolytope). Algorithm 2 takes an agent-action b ∈ B
and a starting point in the best-response polytope Pb, and finds a strategy x⋆

b ∈ Pb that achieves
εδ-optimal principal’s utility in the polytope, i.e., U1(x

⋆
b , b) ≥ maxxb∈Pb

U1(xb, b)− εδ.

Proof sketch. The correctness of OptimizeWithinPolytope is due to the way we construct the estimated
polytope P̂b. The first property is that P̂b is defined by approximations to a subset of the constraints
defining Pb. As a result, if no strategy in P̂b significantly improves utility (over εδ amount), then
there is also no strategy in P̂b improving utility beyond εδ. The second property is the accuracy
to which we approximate the constraints of Pb that we discover. We achieve this accuracy by
using BinarySearch to get close to the boundary of Pb and using SearchForPolytopes to discover all
boundaries nearby.

Beyond the correctness of OptimizeWithinPolytope, there are two other important properties that we
discuss below. These properties are regarding the minimum improvement in every improvement step
and the number of non-improvement steps. Both of these quantities are important for bounding
the total number of rounds the main algorithm uses to find the approximate local Stackelberg
equilibrium.

In each improvement step, utility increases by at least εδ/t as shown in Lemma H.2. This is due to
the choice of termination condition which implies that each improvement occurs in a direction with
at least εδ utility improvement possible.
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All non-improvement steps occur in the searching phase are the rounds in sub-routines BinarySearch
and SearchForPolytopes. These steps include back-tracking toward previous average strategies. This
is made efficient by our algorithm’s restriction of selecting strategies in ∆(A) that are at least at ℓ1
distance of γ away from the boundary of the simplex. Given this restriction, changing the average
strategy at round t from x̄ to x̄′ can be done in ∥x̄− x̄′∥1t/γ rounds.

3.2 Analyzing SearchForPolytopes Searching for polytopes

Polytope Pb

x(t−1)

x(t)

previous improvement
direction ub

Approx. boundary

new improvement
direction

(a) Optimization within polytopes. The figure illus-
trates how improvement directions are updated in
OptimizeWithinPolytope after adding new constraints.
If x(t) falls outside of the true polytope Pb, we first
find an approximate boundary (the dashed line), and
update the improvement direction subject to the new
constraint.

Pb1

Pb2

Pb3

Approx.
hyperplane

ĥb1,b2

Random search
along ĥb1,b2

x0

x(t)

(b) Search for polytopes. The figure illustrates the
SearchForPolytopes procedure. Pb1 and Pb2 are the
discovered polytopes. When performing random
search along the approximate hyperplane ĥb1,b2 , the
search point x(t) falls in Pb3 with constant probabil-
ity. When this happens, we discover a new polytope
Pb3 .

Figure 2: Algorithmic components for computing local Stackelberg equilibria

The SearchForPolytopes algorithm finds all the polytopes that are within a distance of at most ρ
from a given point x ∈ ∆(A). For illustration, consider the example in Figure 2b. If the input
point x is within ρ distance to the intersection x0, then SearchForPolytopes would return all the
surrounding polytopes Pb1 ,Pb2 ,Pb3 . This guarantee is formally stated in the following theorem.

Theorem 3.4 (Correctness of SearchForPolytopes). Starting from a point x∗ in Pb, for any α ∈
(0, o(R2σ/m

3)) and ρ < α, SearchForPolytopes finds ĥb,b′ such that ∥ĥb,b′ − hb,b′∥2 ≤ α, for every
b′ ∈ Pρ(x∗).

Remark 3.5. Our algorithm applies SearchForPolytopes in two contexts. The first is to find separating
hyperplanes in OptimizeWithinPolytope and the second is to find all polytopes within a δ radius of a
point to certify it as a Local Stackelberg equilibrium or find evidence against this.

In the first context, we require α-approximation of the separating hyperplane. Since the guarantee of
the theorem holds for ρ < α, we need to get within α close to the boundary so that the separating
hyperplane lies in the region that SearchForPolytopes explores. In the second context, we apply the
theorem for the choice of ρ = δ.

As previously mentioned, the main challenge that SearchForPolytopes overcomes is searching all
polytopes efficiently including ones with exponentially small volume are difficult to find through
random search. SearchForPolytopes still performs random search, but within a restricted space of a
lower dimension. The restricted space is the intersections of all the boundary hyperplanes discovered
up to the point of the search.

That is, suppose boundary hyperplanes hj for j ∈ J are encountered and are approximated as
ĥj for each j ∈ [J ]. Then in the next round of search, SearchForPolytopes conducts a Gaussian

11



random search within the subspace ŜJ := {x ∈ ∆(A) | ĥJx = 0}, which has dimension m− |J | as a
consequence of Assumption F.2

Assumption 2.4 ensures that all the random directions generated for search do indeed fall in true
surrounding polytopes and not in any other polytope. This is because by the assumption, all other
polytopes are sufficiently far enough. Hence we don’t falsely discover polytopes other than the
surrounding polytopes.
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A Related Work

While the Stackelberg equilibrium can be computed in polynomial time given full information
about the game via a reduction to linear programming, learning the Stackelberg equilibrium from a
best-response oracle requires additional assumptions. This challenge has been analyzed in general
games (Letchford et al., 2009) and in specific games such assecurity games (Letchford et al., 2009;
Blum et al., 2014; Peng et al., 2019; Balcan et al., 2015), demand learning (Kleinberg and Leighton,
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2003; Besbes and Zeevi, 2009) and strategic classification (Dong et al., 2018; Chen et al., 2020;
Ahmadi et al., 2023).

Learning the Stackelberg equilibrium through interactions with a learning agent that can (relatively)
quickly forget has been studied by reducing the problem to a query-based algorithm with access to an
approximate best-response oracle. This approach has been applied to interactions with non-myopic
agents in auction design (Amin et al., 2013; Mohri and Munoz, 2014; Liu et al., 2018; Abernethy
et al., 2019) and in general games (Haghtalab et al., 2022) and to interactions with adaptively
calibrated agents (Haghtalab et al., 2024). In contrast, when interacting with mean-based learners
that do not forget quickly, both exponential lower and upper bounds have been established on the
iteration complexity of approximating the Stackelberg value (Brown et al., 2024b).

Beyond the Stackelberg value, alternative benchmarks have been explored. Prior work has investigated
the problem of finding a sequence of actions for the optimizer that maximizes its utility when
interacting with a learning agent—potentially achieving a higher utility than that obtained by
playing the Stackelberg equilibrium. This has been studied in both general game settings and
in specific domains such as auction design, contract design, and information design (Braverman
et al., 2018; Deng et al., 2019; Mansour et al., 2022; Cai et al., 2023; Rubinstein and Zhao, 2024;
Guruganesh et al., 2024; Lin and Chen, 2024). However, in general games, even when the optimizer
has full knowledge of the learner’s utility function, the optimization task is known to be NP-hard
(Assos et al., 2024, 2025).

Additional related work includes the impossibility of approximating the Stackelberg value when
the learner is strategic or noisy (Ananthakrishnan et al., 2024; Donahue et al., 2024); designing
learners that are Pareto-optimal against strategic agents (Arunachaleswaran et al., 2024b); learning
with Bayesian knowledge about the opponent (Arunachaleswaran et al., 2024a); and computing the
Stackelberg equilibrium in continuous games (Fiez et al., 2020; Maheshwari and Mazumdar, 2023;
Brown et al., 2024a).

B Discussion and Limitations

In this paper, we propose an algorithm for learning a (ε, δ)-local Stackelberg equilibria of an unknown
discrete game through repeated interactions with an agent employing the fictitious play algorithm.
Our algorithm uses a number of iterations that is exponential in 1

εδ but polynomial in the size of
the principal’s and agent’s action spaces. In particular, we avoid the exponential dependency on
the action space size, which is unavoidable for learning the global Stackelberg equilibria as shown
by Brown et al. (2024b).

When is our algorithm useful? Our main algorithm’s round complexity grows exponentially
with the accuracy parameters — a dependence that we show in Theorem C.1 to be unavoidable for
all algorithms. Our method is therefore attractive when the action spaces are large and a moderate
accuracy suffices: for example, when m,n≫ poly( 1

εδ ). By contrast, if the goal is to obtain very high
accuracy in a small game, then existing approaches with exponential dependency on m,n (such as
those in (Brown et al., 2024b) for learning the global Stackelberg equilibria) may be more practical.

Comparison between other benchmarks. Our polynomial-time guarantee is achieved by
targeting a weaker benchmark: local Stackelberg equilibria. In general, the principal’s utility in local
Stackelberg equilibria may be lower than that in global Stackelberg equilibria. We provide a more
detailed discussion of the comparison between various benchmarks in Appendix E. In particular,
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we show that in the class of Stackelberg security games, the local and global Stackelberg equilibria
provides the same utility guarantee for the principal. As a corollary, our algorithm can efficiently
approximately achieve utility equivalent to the global Stackelberg equilibria against fictitious play
agents in unknown security games.

Future directions. In this paper, we focus on fictitious play agents as a first step towards studying
learning agents who are slow to forget. A natural and pressing future direction is to extend our
algorithms and analysis to mean-based agents — agents who approximately best respond to the
average historical strategies. Addressing this would likely require a more robust SearchForPolytopes
subroutine with more careful updates, as approximate best responses become more unstable near
the polytope boundaries.

C Lower bound

Theorem C.1 (Lower Bound). Assume a repeated game between a learner, who employs Fictitious
Play, and an optimizer who does not know the learner’s utility. Let n be the number of actions for
the learner, and let ϵ ∈ (0, 1/3). Assume that n ≥ 1/ϵ2. Let m be the number of actions for the
optimizer and assume that m ≥ 1/ϵ5. Then, there exists a distribution over games such that for any
randomized algorithm used by the optimizer, the expected number of iterations required to find an
ϵ-approximate local Stackelberg equilibrium is at least eC/ϵ, where C > 0 is a universal constant.

Further, this lower bound holds under smoothed analysis, when each entry in the learner’s utility
matrix is perturbed by a small constant and when Assumption F.3 is satisfied.

Proof Sketch. We present the intuition for the lower bound construction here and present the
full proof in Appendix J.5. We construct a game that satisfies the following properties:

• There exists a unique local Stackelberg equilibrium, and the only ϵ-approximate local Stackel-
berg points are in its vicinity. Thus, the optimizer must locate this point.

• Until the optimizer reaches this local Stackelberg equilibrium, its best strategy is to perform a
local search, iteratively moving from x(t−1) to a neighboring point x(t) with a higher utility.

Our goal is to show that in such a game, an optimizer following this local improvement strategy
requires time exponential in 1/ϵ to reach the equilibrium. This follows from the following properties
of the game:

• With high probability, the optimizer’s utility at x(1) is close to 0.

• At the local Stackelberg equilibrium, the optimizer’s utility is 1.

• For most values of x, the optimizer is only slightly shy of being an ϵ-approximate Stackelberg
point, and the utility gradient at these points is on the order of ϵ.

These properties imply that the total distance traversed,
∑T

t=1 ∥x(t) − x(t−1)∥1, must be at least
Ω(1/ϵ). Since each incremental change satisfies ∥x(t) −x(t−1)∥1 ≤ 1/t (due to the averaging effect of
the history), it follows that the number of iterations T must be at least exp(Ω(1/ϵ)).

To construct a game that exhibits this behavior, we define a partition of the simplex ∆(A) into
best-response polytopes. The construction consists of the following key elements:

• A large best-response polytope that covers most of the simplex.
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• A path consisting of approximately 1/ϵ vertices, denoted v1, . . . , vℓ, where ℓ ≈ 1/ϵ.

• For each vertex vi, a small best-response polytope centered around it.

• For each edge vivi+1 along the path, a corresponding polytope covering the edge of the simplex
that connects these two vertices.

• No additional best-response polytopes beyond those described.

The game is designed so that the only local Stackelberg equilibrium occurs at vℓ. To enforce this, we
construct the optimizer’s utility within each polytope as follows:

• In the large polytope, the optimizer’s utility increases monotonically as one moves toward v1,
with a gradient slightly greater than ϵ.

• Along the path, the optimizer’s utility increases when transitioning from the polytope around
vi to the polytope of the edge vivi+1, and again when moving from the edge polytope to the
polytope around vi+1. Further, within each polytope along the path, the optimizer’s utility
gradually increases.

• This ensures that the optimizer’s utility strictly increases along the path, culminating at vℓ.

This structure guarantees that no point other than vℓ can serve as a local Stackelberg equilibrium.
The formal proof provides the details of this construction.

Finally, we argue that the optimizer’s best strategy is to follow the designated path. Since the
number of vertices in ∆(A)—equivalently, the number of optimizer actions—is large relative to 1/ϵ,
and since the large polytope provides no information about the path beyond the location of v1, the
optimizer has no alternative but to go along it. Any attempt to shortcut the path would require
searching through many vertices or edges of the simplex to locate one that lies on the path. This
exhaustive search would take at least exp(Ω(1/ϵ)) iterations, establishing our result.

D Smoothed analysis

In this section, we show that the singular value assumption (Assumption F.2) holds with high
probability when the agent’s utility matrix U2 is obtained by perturbing any given utility matrix
(denote the original matrix with U2) with i.i.d. Gaussian noise.

More formally, let U2 ∈ [0, 1]m×n be the initial agent utility where each entry U2(a, b) ∈ [0, 1]
represents the agent’s utility under action pair (a, b) ∈ A×B. We will perturb this utility matrix by
adding an independent Gaussian noise W (a, b) ∼ N (0, σ2) to each entry (a, b), i.e.,

∀(a, b) ∈ A× B, U2(a, b) = U2(a, b) +W (a, b).

In matrix form, this can be written as U2 = U2 + W , where W
iid∼ N (0, σ2) is the Gaussian

perturbation matrix. Recall that as defined in Definition F.1, Gb denotes the augmented constraint
matrix for any agent action b ∈ B, and Sm(Gb) denotes the set of all m×m square sub-matrices of
Gb.

Theorem D.1 (Lower bound on the minimum singular value). Let U2 ∈ [0, 1]m×n be an arbitrary
utility matrix of the agent, and let U2 be a Gaussian perturbation of U2 with variance σ2. Then
the resulting augmented constraint matrices of the perturbed utility matrix satisfies that for σ =

Θ
(

σδ

m
5
2 2n

)
, Assumption F.2 holds with probability at least 1− δ.
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Remark D.2. Although σ has an exponential dependency on m, in our final bound (Theorem 3.1),
the dependence is only through log(1/σ). As a result, this introduces only a logarithmic dependence
on m and a polynomial dependence on n.

To establish Theorem D.1 under smoothed analysis, we will make use of the result on the minimum
singular value of a Gaussian perturbed square matrix (Sankar et al., 2006). However, since the
submatrix of the augmented constraint matrix Gb could contain rows from the identity matrix Im or
the all-one vector 1m (which are not perturbed by Gaussian noise), we need to perform some special
treatments to these cases. We prove Theorem D.1 in Appendix J.6.

E Comparing local Stackelberg benchmark with other benchmarks

We will compare the local Stackelberg with other solution concepts in this section. We will compare
solution concepts according to two criteria.

The first is the utility the principal achieves in a solution concept. Since there can be multiple
solutions in a solution concept, we will compare the least principal utilities across solution concepts.

The second criterion is the computational feasibility of approximating that solution concept through
interactions with a learning agent.

• Stackelberg equilibrium: The Stackelberg equilibrium is the local Stackelberg equilibrium
with the highest utility for the principal. However, this can be intractable to approximate when
interacting with a mean-based learner (Brown et al., 2024b).

• Coarse Correlated Equilibrium (CCE): A CCE be efficiently approximated against a mean-
based learner. This can be done by simply employing a no-regret learning algorithm. There are
cases where the minimum principal utility among CCEs is greater than the minimum principal
utility among local Stackelberg equilibria and cases where the relation goes the other way. In
particular, for Stackelberg security games, the local Stackelberg equilibrium achieve the same
utility for the principal as the global Stackelberg equilibrium (see Proposition E.3 for more details).
Hence, for this class of games, the local Stackelberg equilibrium yields a higher utility compared
to any CCE (Von Stengel and Zamir, 2010).

• Smoothed Local Stackelberg Equilibrium. The smoothed local Stackelberg can be thought
of the local Stackelberg equilibrium in the setting where there is some noise (from N (0, η2I))
added to the principal’s strategy.

The noise added allows us to side-step the challenge of discontinuous utilities for the principal.
However, the utilities of the smoothed local Stackelberg can be much worse than the utility of any
local Stackelberg.

The smoothed local Stackelberg is defined as follows:

Definition E.1 ((ε, δ, η)-Smoothed Local Stackelberg Equilibria). A principal’s strategy x ∈ ∆(A)
is an (ε, δ, η)-Smoothed Local Stackelberg strategy if

∀x′ ∈ B1(x; δ), E
z′∼N (x′,η2I)

sup
y′∈BR(z′)

U1(z
′, y′) ≤ E

z∼N (x,η2I)
sup

y∈BR(z)
U1(z, y) + εδ,

where B1(x, δ) denote the ℓ1 ball of radius δ around x, i.e., the set of strategies with ∥x′−x∥1 ≤ δ.
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The random noise added to the principal’s strategy smoothens the principal’s utility and makes it
continuous. As a result, gradient-free optimization methods (Maheshwari and Mazumdar, 2023;
Fiez et al., 2020; Flaxman et al., 2004; Nesterov and Spokoiny, 2017; Gasnikov et al., 2023) can
be used to compute a (ε, δ, η)-Smoothed Local Stackelberg equilibrium.

We can however show that the worst smoothed local Stackelberg equilibrium can have principal’s
utility at least Ω(ε1/d) worse than the the worst local Stackelberg equilibrium.

We can show this by constructing an example as in Figure 3. In this example, there is a very thin
polytope P1 that still has a ball of radius R. Note that this example satisfies the assumptions we
use for our results.

At the point of intersection of the three polytopes x, the actions of polytopes P1, P2, P3 yield the
principal utilities in that order, with the utilities differing by a constant amount. x is the optimal
strategy within P2. Since the action of P3 yields lesser utility and since P1 is a very thin polytope,
x is a smoothed LSE when η ∈ o(Rε1/d).

x is however not an LSE. x∗ is the only LSE and has at least Ω(R) utility larger than x.

On the other hand, if η ∈ Ω(ε1/d), two points in the same best-response polytope at ℓ1 distance
η both form a smoothed Stackelberg equilibrium. By linearity of utilities within best-response
polytopes, one of these points has principal utility less than Ω(η) compared to the other.

P1

P2 P3

x∗

x

Figure 3: LSE vs Smoothed LSE : A game where x is a smoothed LSE for small enough η and x∗ is
the sole LSE. x is the optimal strategy within polytopes P2 and P3. And x∗ is the optimal strategy
within P1. The strategy x with action of P1 has utility 1 more than the strategy of x with actions of
P2 or P3. Since P1 is a very thin polytope, x is nevertheless a smoothed LSE. It is however not an
LSE.

Stackelberg Security Games. In the remainder of this section, we consider a structured class of
games: the Stackelberg Security Games (SSG) (Kiekintveld et al., 2009; An et al., 2012). We will
show that under standard non-degeneracy assumptions (Assumption E.2), the value of any local
Stackelberg equilibria is the same as the value of the global (strong) Stackelberg equilibria.

We set up the notations for the SSG model, following the formulation from (Haghtalab et al., 2022).
In a SSG, there is a set of n targets that the principal aims to protect. The agent has action
space B = [n], i.e., the agent can choose (potentially randomly) a target to attack. The principal’s
strategy space is a downward-closed subset A ⊆ [0, 1]n, where each coordinate xi represents the
amount of resource that the principal puts in protecting target i ∈ [n]. For x ∈ A and y ∈ B, the
principal’s and agent’s utility functions are U1(x, y) = uy(x) and U2(x, y) = vy(x), where uy and
vy are 1-dimensional functions that are strictly increasing and strictly decreasing respectively, and
satisfy the slope bounds in Assumption E.2.
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Assumption E.2 (Regularity (Haghtalab et al., 2022)). There exists a constant C ≥ 1 such that
for all 0 ≤ s < t ≤ 1 and y ∈ B, the functions uy and vy satisfy

1

C
≤ vy(s)− vy(t)

t− s
≤ C, 0 <

uy(t)− uy(s)

t− s
≤ C.

Proposition E.3 (Equivalence of Local and Global Stackelberg Values). For Stackelberg Security
Games satisfying the regularity assumptions in Assumption E.2, every local Stackelberg equilibria x̃
achieves the same principal utility as the global Stackelberg equilibria x⋆, i.e.,

U1(x̃,BR(x̃)) = U1(x
⋆,BR(x⋆)).

Proof of Proposition E.3. We prove this proposition using the characterization through conservative
strategies proposed by Haghtalab et al. (2022). A principal’s strategy x ∈ A is called conservative if
for all y ∈ [n], xy > 0 only if y ∈ BR(x), i.e., x only protect targets that belongs to the agent’s best
response set. Following (Haghtalab et al., 2022, Proposition 3.5), it is without loss of generality to
assume that both x̃ and x⋆ are conservative strategies, as otherwise they can be easily transformed
to conservative strategies without changing the principal’s utility under best response.

Since both x⋆ and x̃ are conservative principal strategies, Proposition 3.5 from (Haghtalab et al.,
2022) show that x⋆ is the unique conservative maximizer of U1(x

⋆,BR(x⋆)), which is also the unique
conservative minimizer of U2(x

⋆,BR(x⋆)). Therefore, if if U1(x̃,BR(x̃)) < U1(x
⋆,BR(x⋆)), it must

be the case that U2(x̃,BR(x̃)) > U2(x
⋆,BR(x⋆)). Therefore, from Lemma 3.4 of (Haghtalab et al.,

2022), we have BR(x̃) ⊆ BR(x⋆), and x̃y < x⋆
y for all targets y ∈ BR(x⋆). Since the principal’s

action space A is downward-closed, we can therefore infinitesimally increase the resource that the
principal invests on every y ∈ BR(x̃) without changing the best response set. In other words, there
exists a vector ε⃗ ≤ x⋆ − x̃ such that εy > 0 for all y ∈ BR(x̃), such that the new strategy x̃′ satisfies
BR(x̃′) = BR(x̃). Since uy is strictly increasing, we have

U1(x̃
′,BR(x̃′)) = max

y∈BR(x̃′)
uy(x̃′

y) = max
y∈BR(x̃)

uy(x̃′
y) > max

y∈BR(x̃)
uy(x̃y) = U1(x̃,BR(x̃)),

which contradicts with the fact that x̃ is a local Stackelberg equilibria! Therefore, any local
Stackelberg equilibria must induce the same principal utility as the global Stackelberg equilibria.

F Our Assumptions - Extended

In this section, we state our assumptions and their implications for the structures of the optimization
problem.

Our first assumption involves the concept of constraint matrices.

Definition F.1 (Constraint Matrix). For each of agent’s action b ∈ B, let Hb be the constraint
matrix formed by the set of potential hyperplanes that separate Pb from all other polytopes—i.e.,
Hb =

[
hT
b,b′
]
b′∈B\{b}. Additionally, since the strategies all satisfy the simplex constraint (i.e., 1Tx = 1

and x ≥ 0), we define the augmented constraint matrix as the matrix obtained by augmenting Hb

with an all-1 row vector (1m) and the identity matrix (Im), and denote it with Gb =
[
HT

b 1Tm Im
]T.

Assumption F.2 (Minimum singular value of square submatrix of Gb). Let Sm(Gb) denote all
the m × m square submatrices of Gb. We assume that for all b ∈ B and all square submatrices
G′

b ∈ Sm(Gb), the minimum singular value of G′
b satisfies σmin(G

′
b) ≥ σ.

22



We will justify Assumption F.2 in Appendix D, by showing that it holds with high probability under
the smoothed analysis framework of Spielman and Teng (2004).

Assumption F.3 (Distance from Polytope Boundaries). For every polytope Pb, there exists some
strategy x ∈ Pb such that all coordinates of x are lower bounded by Rmin, i.e., x ≥ Rmin · 1.

Remark F.4. Assumption F.3 is an arguably weaker condition than the assumption made in previous
works on computing an approximate Stackalberg Equilibrium from Best-Response oracle or from
interactions with an agent, such as Blum et al. (2014); Letchford et al. (2009); Haghtalab et al.
(2022). Their assumption states that any polytope Pb contains an ℓ2 ball whose radius is lower
bounded by some constant value r0. Assumption F.3 is weaker for the following reasons:

1. Assumption F.3 is a direct implication of the ball assumption. If a polytope Pb contains a point
xb that satisfies the ball assumption, then the distance from xb to all boundaries of Pb is at
least r0, which naturally implies that the minimum coordinate of xb is also lower bounded by r0.

2. Assumption F.3 only concerns the distance to the simplex boundaries, whereas the ball assump-
tion requires the distance to all polytope boundaries to be lower bounded as well.

3. Previous works that build on the ball assumption (e.g., Blum et al. (2014); Letchford et al.
(2009); Haghtalab et al. (2022, 2024)) usually incurs a dependency on the volume of the ball,
which can be exponential in the dimension (i.e. the number of principal’s actions). In contrast,
our bound only has a polynomial dependence on 1/Rmin.

Structural properties implied by Assumption F.2 In the following lemma, we show that
Assumption F.2 implies that the polytopes and hyperplanes are sufficiently separated from each
other. We defer the proof of this lemma to Appendix J.1.

Lemma F.5 (Polytopes/Hyperplanes are Far Apart). Let σ be the lower bound on the minimum
singular values defined in Assumption F.2. We have

1. Let R1 = σ/(2m3/2). For all x ∈ ∆(A), |PR1(x)| ≤ m, i.e., there are at most m polytopes that
have distance at most R1 to x.

2. Let R2 = σ/(2m). For all b ∈ B and all x ∈ Pb, there are at most (m − 1) rows h of Gb

that satisfy 0 ≤ ⟨x, h⟩ ≤ R2. This implies that there are at most m− 1 hyperplanes from that
polytope that x can be very close to.

G Querying through Average Strategies

Recall that we use x(t) to denote the principal’s strategy at round t, and x(t) = 1
t

∑t
s=1 x

(s) to
denote the average strategy during the first t rounds. Since a fictitious play agent best responds
to the average strategy, we treat x(t) as our effective search point at round t. Through observing
the best response action action from the agent, i.e., yt ∈ BR(x(t)), we can infer which best response
polytope the average strategies lie in. This best response further dictates which utility function
U1(·, yt) the principal should be optimizing.

However, an inherent constraint of the effective search points is that we can not move too far between
consecutive search points. Specifically, the maximum distance that we can travel in one step (i.e.,
∥x(t+1) − x(t)∥) shrinks at a rate of O(1/t), and is often constrained by the previous search point’s
distance to the simplex boundaries. To capture this, we say that the principal takes step size η(t) at
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round t if the average strategy moves an ℓ1 distance of η(t), i.e.,

∥x(t) − x(t−1)∥1 = η(t)/t. (Step size η(t))

In Algorithm 4, we introduce a procedure for updating the average strategy with a pre-specified
update direction and step size.

ALGORITHM 4: MoveOneStep

Input: Current round t, the current average principal strategy x(t−1) ∈ X , move direction
u(t) ∈ X ,

step size 0 ≤ η(t) ≤ ∥u(t) − x(t−1)∥1.
Output: The principal strategy x(t), such that the average strategy x(t) moves by an ℓ1

distance of η(t) in the direction of u(t).

x(t) =

(
1− η(t)

∥u(t) − x(t−1)∥1

)
x(t−1) +

η(t)

∥u(t) − x(t−1)∥1
u(t).

Algorithm 4 chooses a point x(t) on the line segment between x(t−1) and u(t). In other words, x(t)

is formed by moving the average strategy x(t−1) in the direction of u(t). Note that x(t) is a valid
strategy in the simplex X because it is a linear combination of two valid strategies x(t−1) and u(t).
It has the following property:

x(t) − x(t−1) =
x(t) − x(t−1)

t
=

η(t)

t
· u(t) − x(t−1)

∥u(t) − x(t−1)∥1
⇒ ∥x(t) − x(t−1)∥1 =

η(t)

t
.

Remark G.1 (Maximum step size in any direction). At round t, the maximum ℓ1 that the principal
can move its average strategy towards the direction u(t) is ∥u(t) − x(t−1)∥1/t. In other words, the
maximum feasible step size is ∥u(t) − x(t−1)∥1.

x(t−1) x(t) u(t)x(t)

ℓ1 distance = η(t)

t
≤ d

t

d

Figure 4: An illustration of how to move the average strategies in MoveOneStep. If ∥x(t−1)−u(t)∥1 = d,
then by choosing appropriate x(t) along the line segment between x(t−1) and u(t), the principal’s
average strategy can move ℓ1 distance of ∥x(t−1) − x(t)∥1 ∈ [0, dt ] (the shaded region is achievable).

H Supplementary materials for OptimizeWithinPolytope

H.1 Correctness of OptimizeWithinPolytope

In this section, we establish the correctness of OptimizeWithinPolytope. The OptimizeWithinPolytope
subroutine invokes another subroutine SearchForPolytopes that to find the hyperplane separating
two points in different polytopes. We will defer the analysis of the SearchForPolytopes subroutine to
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Section 3.2 and simply assume that given x,x′ ∈ X that lie in two different best response polytopes,
the subroutine returns an α-approximate hyperplane to the true separating hyperplane. That is,
if the true hyperplane separating x,x′ is h, then, SearchForPolytopes returns a hyperplane ĥ that
satisfies ∥ĥ− h∥2 ≤ α.

The main technical lemmas are listed below.

Lemma H.1 (Closeness of optimal values within true and estimated polytopes). Let H, Ĥ ∈ Rk×m

with k ≤ n be the true and estimated constraints, which satisfy ∥H − Ĥ∥2 ≤ α
√
m, where α is the

estimation error that can be chosen sufficiently small. Consider polytopes Pb and P̂b defined as
follows:

P = {x ∈ Rm : Hx ≥ 0,1Tx = 1,x ≥ 0}, P̂ = {x ∈ Rm : Ĥx ≥ α,1Tx = 1,x ≥ γ · 1}

Then, when maximizing the principal’s utility U1(·, b) over Pb and P̂b, the corresponding optimal
values satisfy

max
x∈P̂

U1(x, b) ≤ max
x∈P

U1(x, b) +
2αm

σ − α
√
m

+ 2γ/Rmin,

where α is chosen to be at most O
( σ
m2n

)
, σ is the lower bound on minimum singular values from

Assumption F.2, Rmin is the parameter from Assumption F.3, and R2 = σ/m is from Lemma F.5.

Proof sketch (Full proof in Appendix J.2). The high level idea is that given a point x satisfying
constraints according to the constraint matrix Hx ≥ 0, we want to perturb x to the point x+ z
satisfying the slightly perturbed constraint of Ĥx ≥ α.

The constraints that x satisfies by a low margin are the most sensitive to being violated by perturbing
x. So we will focus on these constraints. Specifically, we will focus on the set of constraints indexed
by J that are satisfied by a margin of less than R2. By our Lemma F.5, we know that |J | ≤ m.

Finding a z that satisfies the perturbed constraint with ≤ m constraints perturbed amounts to
solving a system of equations with fewer equations than constraints. The norm of the minimum
norm solution is provided by the inverse of the minimum singular value of HJ which we assume to
be bounded below by σ (Assumption F.2).

We can show that we can find a z with norm small enough that the remaining contraints outside of
J that were satisfied by a large margin remain satisfied even after perturbation by z.

H.2 Sample complexity of OptimizeWithinPolytope

Recall that the time steps that the principal spends in OptimizeWithinPolytope can be divided
into two categories: the improvement steps and the searching steps. In this section, we establish
guarantees for the two categories separately.

Analysis of the improvement steps. We will first analyze the improvement steps by showing
that each step improves the principal’s utility by at least εδ/t (Lemma H.2). This lemma will be
crucial for bounding the total number of different polytopes, as the cumulative utility improvement
is at most 1.

Lemma H.2 (Utility Improvement). Suppose x(t−1) → x(t) is an improvement step, where both
strategies are inside Pb. The principal’s utility increases by at least εδ

t during this improvement step.

U1(x
(t), b)− u(x(t−1), b) ≥ εδ

t
.
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Proof of Lemma H.2. Since the OptimizeWithinPolytope algorithm does not terminate at round t−1,
we know that there exists z ∈ P̂b such that U1(z, b) > U1(x

(t−1), b) + εδ. Therefore, by choosing
x(t) = z, the principal’s utility at x(t) can be calculated as

U1(x
(t), b) =

t− 1

t
· U1(x

(t−1), b) +
1

t
· U1(z, b).

The improvement in utility therefore satisfies

U1(x
(t), b)− u(x(t−1), b) =

U1(z, b)− U1(x
(t−1), b)

t
>

εδ

t
.

Analysis of the searching steps. The searching phases consists of two subroutines: BinarySearch
(Algorithm 5) and SearchForPolytopes (Algorithm 3, which we analyze in Appendix I.1). We provide
the guarantee of BinarySearch and defer its proof to Appendix J.3.

Lemma H.3 (Binary search to get close to the boundary). Let γ be the minimum distance from all
search point to the boundary in Lemma H.1. Suppose the principal’s average strategy moves from
x(t−1) in polytope Pb to x(t) in a different polytope Pb′, with ℓ1 step size of ∥x(t) − x(t−1)∥1 = ε

t ,
where we assume t ≥ 10 ε

γ . Then the procedure BinarySearch (see Algorithm 5) takes at most

s ≤ O
(

ε
γ + log ε

αt

)
. steps and returns two consecutive average strategies x(t+s−1), x(t+s), such that

they are on the opposite sides of the boundary (one is in Pb, the other is in Pb′), and they are close
in ℓ1 distance, i.e., ∥x(t+s−1) − x(t+s)∥1 ≤ α.

I Supplementary materials for SearchForPolytopes

I.1 Correctness of SearchForPolytopes

Theorem 3.4 (Correctness of SearchForPolytopes). Starting from a point x∗ in Pb, for any α ∈
(0, o(R2σ/m

3)) and ρ < α, SearchForPolytopes finds ĥb,b′ such that ∥ĥb,b′ − hb,b′∥2 ≤ α, for every
b′ ∈ Pρ(x∗).

In this section, we outline the main components of the proof of Theorem 3.4. We will present the
full proof in Appendix J.4.

Let J of size j index the polytopes already discovered in previous iterations. We will analyze
the iteration of the algorithm with the search space ŜJ = {x ∈ ∆(A) : ĥJx ≥ αj}, where
ĥJ is the matrix of approximations to the hyperplanes discovered thus far. Inductively we will
show that if ∥ĥb,bj − hb,bj∥ ≤ αj for every j ∈ J , the next constructed hyperplane satisfies
∥ĥb,bnew − hb,bnew∥ ≤ αjO(α2

jm
2/σ2). By setting α1 ≤ α(σ/m)m, we ensure that all αj ≤ α. This is

because the number of iterations of this algorithm is at most m as shown in the following lemma.

Lemma I.1 (Algorithm terminates after m−1 hyperplanes added). The SearchForPolytopes algorithm
will terminate after at most m− 1 hyperplanes are added.

Now we will discuss how random search on the search space via Gaussian random vectors will
discover new polytopes in Pρ(x∗) that are not yet discovered through sufficiently many search points
landing in them.

Lemma I.2 (Search finds points close to a new boundary). With high probability, Ω(1/m) of the search
points generated lie in a new, undiscovered polytope Pbnew and lie within distance O(ηj

√
m+αjm

3/σ)
of hb,bnew .
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Proof. First we will show that many search points fall in a new, previously undiscovered polytope.
In the space {x ∈ ∆(A) : HJ ≤ αj}, the agent gets the same utility by playing any action in J or
the action of the current polytope. Since our search space is an approximation of this space, the
agent is approximately indifferent among all already discovered actions for strategies in the search
space (Lemma J.4).

As long as there is a polytope yet to be discovered in Pρ, we show that random search generates a
constant fraction of principal strategies where the action corresponding to undiscovered polytope
yields a higher utility, indicating that the searched strategies lie in a previously undiscovered polytope
(Lemma J.5).

Finally, due to the η scaling of the search vectors, the searched strategies are η
√
m close to the point

x̂J we search from which in turn is close to x∗ (Lemma J.3) which lies on hb,bnew . This shows that
the points discovered in Pbnew are close to the boundary hyperplane hb,bnew .

The properties of the search vectors in the new polytope — a significant fraction of all search vectors
and lying close to the boundary allow us to accurately reconstruct hb,bnew . Let Y be a matrix of
the search points that land in the new polytope Pbnew . We will construct a hyperplane solving
ĥ = argminh ∥hY T∥. We will now show that ĥ is a good approximation to hb,bnew

Lemma I.3 (Approximating a hyperplane). Suppose RandomSearch in the search space ŜJ =
{x : ĥJx = αj} generates d ∈ Θ(m2 logm) points. Let bnew be the undiscovered polytope with the
maximum number of search points. Let Y ∈ Rk×m be a matrix where the rows are all search points
in Pbnew with distance from x̂J ∈ O(η

√
m).

Then ĥ = argminh ∥hY t∥2 satisfies ∥ĥ− hb,bnew∥ ≤ α.

Proof. The proof idea is to first provide a lower bound in the minimum singular value of Y . Because
the rows in Y lie close to hb,bnew , ∥hb,bnewY t∥ is small. Since ĥ minimizes the norm argminh ∥ĥY T∥,
∥hb,bnewY t∥ is also small. Due to the lower bound on the minimum singular value of Y , this will
imply that ∥ĥ− hb,bnew∥ is small.

So far we argued that as long as some polytope in Pρ(x∗) is undiscovered, we will find new polytopes
through random search. To complete the argument, we will argue that this means that all polytopes
in Pρ(x∗) are discovered before the algorithm terminates. This is due to the property that no more
than m polytopes surround a point and the only way the algorithm could terminate without finding
some polytope in Pρ(x∗) is if there were more than m surrounding polytopes.

I.2 Complexity of SearchForPolytopes

Lemma I.4 (Number of rounds spent searching for polytopes). When α ∈ O(γσ2/(n2m7 logm)),
the number of rounds spent in calls of SearchForPolytopes is at most O(n2m2 logm).

Proof. SearchForPolytopes is invoked at most n2 times, once when encountering each hyperplane.
The different types of movements are: 1) taking a random step of ℓ2 distance at most η

√
m, 2)

returning back to the search point, and 3) projecting the search point back to updated search spaces.

Each of these movements have a ℓ1 length in ∆ ∈ O(αm5/σ2). And the total number of these
movements is r = O(n2m2 logm) over all the n2 possible times SearchForPolytopes is invoked.
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In rounds t with γ/t ≥ ∆, we can make the movement in a single round. So the number of rounds
before t0 = γ/∆ is at most r = O(n2m2 logm).

For rounds after t0, may need multiple steps to make the movement. In these rounds t, we will
traverse exactly γ/t ℓ1 distance.

The total distance traversed while making all these movements is at most r∆. Let us lower bound
the total distance traversed by the total distance traveled in rounds after t0 = γ/∆.

r∆ ≥
t0+K∑
τ=t0

γ

τ
≥ γ log

(
1 +

K

t0

)
=⇒ K ≤ t0

(
exp

(
r∆

γ

)
− 1

)
Our assumption that α ∈ O(γσ2/(n2m7 logm)) implies that r∆/γ ≤ 1. So, using ex − 1 ≤ x,
K ≤ t0

r∆
γ . Therefore the total number of rounds spent in SearchForPolytopes is at most the number

of rounds before t0 which is ≤ r ∈ O(n2m2 logm) and the number of rounds after t0 which is also
≤ r ∈ O(n2m2 logm).

J Full proofs of results

J.1 Proof of Lemma F.5

Proof of Lemma F.5, part (1). For the sake of contradiction, assume that there are exists x ∈ ∆(A)
such that PR1(x) contains at least m+ 1 polytopes. We denote them with b0, b1, . . . , bm, where we
also assume without loss of generality that x ∈ Pb0 (i.e., b0 is a best response to strategy x).

We will first show that for all i ∈ [m], we have 0 ≤ hT
b0,bi

x ≤
√
m. Since dist(x,Pbi) ≤, there exists

zi ∈ Pbi such that ∥x− zi∥2 ≤. This implies

U2(x, b0)− U2(zi, b0) = ⟨ub0 ,x− zi⟩ ≤ ∥ub0∥2 · ∥x− zi∥2 ≤
√
m.

Therefore, we can bound the inner product of x and the hyperplane hb0,bi = ub0 − ubi as

⟨hb0,bi ,x⟩ = U2(x, b0)− U2(x, bi) = U2(x, b0)− U2(zi, b0)︸ ︷︷ ︸
≤
√
m

+U2(zi, b0)− U2(zi, bi)︸ ︷︷ ︸
≤0 since bi∈BR(zi)

≤
√
m.

We also know ⟨hb0,bi ,x⟩ ≥ 0 since b0 ∈ BR(x). As a result, we have |hb0,bi
Tx| ≤

√
m.

Finally, we establish a contradiction using the following matrix K ∈ Rm×m, which is a square
sub-matrix of the augmented constraint matrix Gb0 .

K =
[
hb0,bi

]
i∈[m]

.

Combing the above bound on |hb0,bi
Tx| and the fact that ∥x∥2 ≥ ∥x∥1√

m
= 1/

√
m, we have

∥Kx∥2
∥x∥2

≤
√
m ·

√√√√ m∑
i=1

|hb0,bi
Tx|2 ≤

√
m ·

√√√√ m∑
i=1

(
√
m)2 = m2/3 =

σ

2
,

which contradicts with the assumption that

σmin(K) = min
x̸=0

∥Kx∥2
∥x∥2

≥ σ.

Therefore, we conclude that there cannot be more than m polytopes in P(x) where = σ
2m2/3 .
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Proof of Lemma F.5, part (2). The second claim follows from a very similar proof. Suppose for
the sake of contradiction that there exists a submatrix K ∈ Sm(Gb) of m conditions, and an
x ∈ Pb ⊆ ∆(A), such that x satisfies all constraints in K with margin at most R1, then we have

∥Kx∥2 ≤
√

m ·R2
1 =
√
mR1 ≤ mR1∥x∥2,

which contradicts with σmin(K) ≥ σ for R2 = σ
2m . Therefore, there can be at most m− 1 constraints

from Gb that are satisfied by a margin of at most R2.

J.2 Proof of Lemma H.1

Lemma H.1 (Closeness of optimal values within true and estimated polytopes). Let H, Ĥ ∈ Rk×m

with k ≤ n be the true and estimated constraints, which satisfy ∥H − Ĥ∥2 ≤ α
√
m, where α is the

estimation error that can be chosen sufficiently small. Consider polytopes Pb and P̂b defined as
follows:

P = {x ∈ Rm : Hx ≥ 0,1Tx = 1,x ≥ 0}, P̂ = {x ∈ Rm : Ĥx ≥ α,1Tx = 1,x ≥ γ · 1}

Then, when maximizing the principal’s utility U1(·, b) over Pb and P̂b, the corresponding optimal
values satisfy

max
x∈P̂

U1(x, b) ≤ max
x∈P

U1(x, b) +
2αm

σ − α
√
m

+ 2γ/Rmin,

where α is chosen to be at most O
( σ
m2n

)
, σ is the lower bound on minimum singular values from

Assumption F.2, Rmin is the parameter from Assumption F.3, and R2 = σ/m is from Lemma F.5.

We prove this lemma by showing that the ℓ1 Hausdorff distance between P and P̂ are close, i.e., for
any x ∈ P, we will construct a z ∈ Rm such that x+ z ∈ P̂ and ∥z∥1 is small.

This will automatically imply the statement of the Lemma since the principal’s utilities are 1-Lipschitz
in ℓ1 distance within the polytope. The utility within a polytope due to a strategy x is ⟨ub,x⟩. The
absolute difference in utilities between two strategies is

|U1(x, b)− U2(y, b)| = | ⟨ub,x⟩ − ⟨ub,y⟩ | ≤ ∥ub∥∞∥x− y∥1 ≤ ∥x− y∥1

We bound the Hausdorff distance between Pb and P̂b by the sum of the Hausdorff distances between
Pb and P̃b and between P̃b and P̂b, where

P̃ = {x ∈ Rm : Hx ≥ 0,1Tx = 1,x ≥ γ · 1}

Let us start by bounding the Hausdorff distance between P and P̃.

Lemma J.1. Assume γ ≤ Rmin where Rmin is the parameter from Assumption F.3. The Hausdorff
distance between P and P̃ is upper bounded by 2γ/Rmin. In other words, for every x ∈ P, there is a
y ∈ P̃ with ∥x− y∥1 ≤ 2γ/Rmin.

Proof. By Assumption F.3, there is a point x0 ∈ P that satisfies x ≥ Rmin · 1. Therefore, for any
x ∈ P and λ ∈ [0, 1], we construct yλ as follows: yλ = λx0 + (1 − λ)x. Clearly, yλ lies in P by
the convexity of polytopes. Moreover, since x ≥ 0, we have yλ ≥ λx0 ≥ (λRmin) · 1. We can
thus choose λ = γ/Rmin to ensure yλ ∈ P̃. Finally, for the distance between x and yλ, we have
∥x− yλ∥1 = λ∥x− x0∥1 ≤ 2λ = 2γ/Rmin.
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Next, let us bound the Hausdorff distance between P̃ and P̂.

Lemma J.2. When α≪ σ
m2n

, the Hausdorff distance between P̃ and P̂ is upper bounded by 2ασ. In
other words, for every x ∈ P̃, there is a y ∈ P̂ with ∥x− y∥1 ≤ 4αm/σ.

Proof. Given any x ∈ P̃, we aim to construct z with small norm such that x + z ∈ P̂. To make
sure that x+ z ∈ P̂, we want z to satisfy the following two constraints: (1) Ĥ(x+ z) ≥ α · 1k; (2)
1T(x+ z) = 1, i.e., 1Tz = 0.

Let J ⊆ [k] be the index of rows in H that are satisfied by x by less than a R2 margin, where R2

is the parameter from Lemma F.5. Equivalently, HJ contains all rows h such that 0 ≤ hTx ≤ R2.
Lemma F.5 guarantees that |J | ≤ m − 1. Let H\J denote all other rows. That is, 0 ≤ HJx ≤
R2 · 1, and H\Jx ≥ R2 · 1.

We will first find a z that satisfies constraint (2) and constraint (1), but only restricted to rows in J ,
i.e., ĤJ(x+ z) ≥ α · 1|J |. Defining EJ = HJ − ĤJ to be the error matrix of rows in J , and define

M̂ =

(
ĤJ

1m

)
, we set z as follows:

z = M̂ †
(
EJx+ α1|J |

0

)
= M̂T(M̂M̂T)−1

(
EJx+ α1|J |

0

)
.

In the remainder of the proof, we will first show that z satisfies both constraints (1) and (2), then
upper bound the norm ∥z∥2.

z satisfies constraints (2) and (1) restricted to J . By our construction of z, we have

M̂z = M̂M̂ †
(
EJx+ α1|J |

0

)
=

(
EJx+ α1|J |

0

)
.

Therefore, the vector x+ z satisfies

M̂(x+ z) =

(
ĤJ(x+ z)
1T(x+ z)

)
=

(
ĤJx
1Tx

)
+

(
EJx+ α1|J |

0

)
=

(
HJx+ α1|J |

1

)
As a result, we have Ĥ(x+ z) ≥ α1 (followed from HJx ≥ 0), 1T(x+ z) = 1, and (x+ z) ≥ γ1.

z satisfies constraints (1) outside of J Now we will show that the z found above satisfies
Ĥ\J(x+ z) ≥ α using the fact that x satisfied H\Jx ≥ R2 · 1.

Ĥ\J(x+ z) = (H\J + E\J)(x+ z) (where E\J = Ĥ\J −G\J)

≥ R2 · 1+ E\J(x+ z) +H\Jz (H\Jzx ≥ R21)

≥
(
R2 − ∥E\J(x+ z)∥∞ − ∥H\Jz∥∞

)
· 1

≥
(
R2 − ∥E\J∥∞∥x+ z∥1 −

√
m+ n∥H\J∥1∥z∥2

)
· 1

≥
(
R2 − α−

√
mn(m+ n) · ∥z∥2

)
· 1

The constraints in Ĥ\J are satisfied when ∥z∥2 ≤ R2−α√
mn(m+n)

, which we will show next.
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Upper bounding ∥z∥2. Since z = M̂ †
(
EJx+ α1|J |

0

)
, we have

∥z∥2 ≤ ∥M̂ †∥2 ·
∥∥∥∥(EJx+ α1|J |

0

)∥∥∥∥
2

≤ 2α
√
m

σmin(M̂)
≤ 2α

√
m

σ − α
√
m
≤ 4α

√
m

σ
,

where the last step is due to the choice of sufficiently small α, and the second-last step is due to
Weyl’s inequality (σmin(M̂) ≥ σmin(M)− ∥M − M̂∥2) and that σmin(M) ≥ σ, as M is a submatrix
of Gb with at most m rows (Assumption F.2). This shows that we can choose α to be small so that

2α
√
m

σ − α
√
m
≤ R2 − α√

mn(m+ n)
⇒ Ĥ\J(x+ z) ≥ 0.

The above condition holds when α = o( σ
m2n

). To conclude this part, we translate our ℓ2 norm bound
on z into an ℓ1 norm bound of ∥z∥1 ≤

√
m∥z∥2 ≤ 4αm/σ.

Combining both lemmas, we obtain an upper bound on the ℓ1 Haussdorf distance between P and P̂
which due to the 1-Lipschitzness of utility in ℓ1 norm bounds the difference in optimal utility in P
and P̂. The proof is thus complete.

J.3 Proof of Lemma H.3

Lemma H.3 (Binary search to get close to the boundary). Let γ be the minimum distance from all
search point to the boundary in Lemma H.1. Suppose the principal’s average strategy moves from
x(t−1) in polytope Pb to x(t) in a different polytope Pb′, with ℓ1 step size of ∥x(t) − x(t−1)∥1 = ε

t ,
where we assume t ≥ 10 ε

γ . Then the procedure BinarySearch (see Algorithm 5) takes at most

s ≤ O
(

ε
γ + log ε

αt

)
. steps and returns two consecutive average strategies x(t+s−1), x(t+s), such that

they are on the opposite sides of the boundary (one is in Pb, the other is in Pb′), and they are close
in ℓ1 distance, i.e., ∥x(t+s−1) − x(t+s)∥1 ≤ α.

ALGORITHM 5: BinarySearch
Input: Left point xL = x(t−1) ∈ Pb, Right point xR = x(t) ∈ Pb′ , Step-size parameters ε, γ, α.
Output: Two consecutive points

(
x(t+s−1), x(t+s)

)
on opposite sides of the boundary, with

ℓ1-distance at most α.
// Perform a binary search along the line segment between xL and xR.
M ← log2(ε/(αt));
for each binary search step i ≤M do

z(i) ← target search point chosen by the binary search algorithm;
If moving left, set β ← γ; if moving right, set β ← ε;
Keep performing MoveOneStep with step size (β + ε

t2i
) towards z(i);

end

Proof of Lemma H.3. Let us refer to x(t) as xL and x(t−1) as xR. Let us also refer to the direction
from xL to xR as right and the direction from xR to xL as left. Throughout the binary search process,
we move along the line between xL and xR. For notational simplicity denote l = ∥xL − xR∥1 = ε/t.

Let M be the number of iterations of binary search. Since each iteration halves the search space, we
have M ≤ log

(
∥x(t)−x(t−1)∥1

α

)
= O(log( ε

αt)).
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For i ∈ [M ], we denote the number of rounds spent in the i-th iteration as [ti, ti + si], where we have
t1 = t and ti+1 = ti+ si+1. The total number of rounds is therefore s =

∑M
i=1(si+1) = M +

∑
i si.

From the halving property of binary search, we know that in iteration i, the total distance moved is
at most ∥x(t)−x(t−1)∥1

2i
, i.e.,

∥x(ti) − x(ti+si)∥1 =
l

2i
.

On the other hand, at each round τ ∈ [ti, ti+si), the average strategy x(t) has at least l/2i+min{ε, γ}
distance to the direction it is moving to (left or right). From Remark G.1 and the BinarySearch
algorithm, the maximum ℓ1 distance that the average strategy can travel from x(τ−1) to x(τ) satisfies

∥x(τ) − x(τ−1)∥1 ≤
l
2i

+min{ε, γ}
τ

.

In fact, in each step τ < ti + si, the principal travels exactly this distance in order to minimize the
total number of steps.

Therefore, the total movement in iteration i satisfies

l

2i
= ∥x(ti) − x(ti+si)∥1 ≥

ti+si−1∑
τ=ti

l
2i

+min{ε, γ}
τ

≥
(

l

2i
+min{ε, γ}

)
· log

(
ti + si

ti

)
(ti ≤ t+ s)

We can use the above inequality to upper bound si as follows:

si ≤ ti

(
exp

(
l
2i

l
2i

+min{ε, γ}

)
− 1

)

≤ ti ·
l

2i−1 ·min{ε, γ}
(ex − 1 ≤ 2x when x ∈ [0, 1])

≤(t+ s) · l

2i−1 ·min{ε, γ}
.

Recall that the total number of steps is s =
∑

i si +M . Summing the above inequality over i ∈ [M ]
gives us

s =
∑
i

si +M ≤ 2(t+ s) · l

min{ε, γ}
+M

⇒ s ≲
ε

γ
+ log

( ε

αt

)
. (From the assumption t ≥ 10 ε

γ )

The proof is thus complete.

J.4 Proof of Theorem 3.4

Theorem 3.4 (Correctness of SearchForPolytopes). Starting from a point x∗ in Pb, for any α ∈
(0, o(R2σ/m

3)) and ρ < α, SearchForPolytopes finds ĥb,b′ such that ∥ĥb,b′ − hb,b′∥2 ≤ α, for every
b′ ∈ Pρ(x∗).

In this section, we present the full proof of Theorem 3.4 by expanding the proof sketch in Appendix I.1.

Let J of size j index the polytopes already discovered in previous iterations. We will analyze the
iteration of the algorithm with the search space ŜJ = {x ∈ ∆(A) : ĤJx ≥ αj}, where ĤJ is the
matrix of approximations to the hyperplanes discovered thus far. Inductively we will show that if
∥ĥb,bj − hb,bj∥ ≤ αj for every j ∈ J , the next constructed hyperplane satisfies ∥ĥb,bnew − hb,bnew∥ ≤
αjO(α2

jm
2/σ2). We will later show how to set each αj so they all remain less than α.
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Lemma I.1 (Algorithm terminates after m−1 hyperplanes added). The SearchForPolytopes algorithm
will terminate after at most m− 1 hyperplanes are added.

Proof of Lemma I.1. We will first argue that |J | ≤ m − 1. By Lemma F.5, the set {x ∈ ∆(A) :
∥HJx∥∞ ≤ R2} is empty if |J | ≥ m. For any point in {x ∈ ∆(A) : ĤJx = 0}, ∥HJx∥∞ ≤√
m∥ĤJx∥2 +

√
m∥(HJ − ĤJ)∥2∥x∥2 ≤ m

√
mα. As long as m

√
mα, this implies that the set

{x ∈ ∆(A) : ĤJx = 0} is empty for |J | ≥ m.

Lemma J.3 (Projection of search point is close to search point). The search point x̂J of the iteration
is close to the target search point x∗, where x̂J is the projection of x∗ on to the search space ŜJ .

∥x̂− x∗∥ ∈ O

(
αjm

2

σmin(HJ)− αj
√
m

)
.

Proof of Lemma J.3.

∥x̂J − x∗∥ = ∥
(
I − Ĥt

J(ĤJĤ
t
J)

−1ĤJ

)
x∗ − x∗∥

= ∥Ĥt
J(ĤJĤ

t
J)

−1ĤJx
∗∥

= ∥Ĥt
J(ĤJĤ

t
J)

−1HJx
∗ + Ĥt

J(ĤJĤ
t
J)

−1(ĤJ −HJ)x
∗∥

= ∥Ĥt
J(ĤJĤ

t
J)

−1∥
(
∥HJx

∗∥+ ∥(ĤJ −HJ)x
∗∥
)

≤ m
1

σmin(HJ)− αj
√
m

(
αj

√
m+ αm

)
∈ O

(
αjm

2

σ

)
.

Lemma J.4. For all points on ŜJ the agent is approximately indifferent among agent actions in J .
That is for every i, j ∈ J , for all x ∈ ŜJ , |U2(x, bi)− U2(x, bj)| ≤ 4αjm.

Proof of Lemma J.4. Note that for all points on ŜJ = {x ∈ ∆(A) : HJ · x = 0}, the principal is
indifferent among follower actions in J since each row j ∈ [J ] equality states that the utility due to
agent action bj is the same as due to b.

Recall that for any b ∈ B, U1(x, b) = ⟨ub,x⟩. For any x̂ ∈ {x : ĤJ · x = αj}, for any i, j ∈ J ,

| ⟨ubi , x̂⟩ −
〈
ubj , x̂

〉
| ≤ |hix̂− hjx̂|
≤ 2∥HJ x̂∥∞
≤ 2∥HJ x̂∥2
≤ 2∥ĤJ x̂+ (HJ − ĤJ)x̂∥2
≤ 2αj(

√
m+m).

Now we will discuss how random search on the search space via Gaussian random vectors will
discover new polytopes in Pδ(x∗) that are not yet discovered.
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There are two components to this argument. The first is while there is an undiscovered polytope in
Pδ(x∗), we will discover a new polytope. The second is that there are not many other polytopes
that are discoverable. Together these two components ensure we discover all polytopes in Pδ(x∗).

The first component is shown in the following lemma.

Lemma J.5. Let z be the random search vector in the space ŜJ with step size η. That is, z ∼
N (0m, η2jϕ

t
JϕJ). If J ̸⊇ Pδ(x∗) and ηj ∈ Θ(αjm

4/σ2), then with Ω(1) probability, x̂J + z does not
lie in Pb or in any polytope Pb′ for b′ ∈ [J ].

Proof. The main idea of this proof is that if there is an undiscovered polytope b′ ∈ Pα(x∗), then

Pr
z

[
hb,b′(x̂J + z) >

σmin(HJ)√
m− 1

· η −O

(
αm3

σmin(HJ)

)
−O(δ

√
m)

]
≥ Ω(1).

This is a lower bound on how much that the principal prefers action b′ over b for x̂J + z. Since the
principal is approximately indifferent between b and any bj for j ∈ J , this is also an approximate
lower bound on the principal’s preference over the new action b′ over any already discovered action.
This means that x̂J + z lies in a polytope that has not already be discovered.

We will lower bound hb,b′(x
∗ + z) and the resulting bound follows from applying the lemma showing

closeness of x̂J and x∗.

Let j = |J |. Let ϕ = [v1, . . . , vm]T be a set of orthonormal vectors such that v1:j is the orthonormal
basis of span(HJ) and vj+1:m is the orthonormal basis of null(HJ). Let z be a Gaussian vector in
the null space of HJ , i.e., z ∼ N (0m, ϕT

j+1:dϕj+1:d).

For any i /∈ J , we can decompose hi into hi = h
∥
i + h⊥i , where h

∥
i ∈ span(HJ) and h⊥i ∈ null(HJ).

This decomposition gives

⟨hi, x+ z⟩ = ⟨hi, z⟩ =
〈
h⊥i , z

〉
= ∥h⊥i ∥2 ·

〈
h⊥i /∥h⊥i ∥2, z

〉
.

We will prove this lemma by showing that (1) ∥h⊥i ∥2 ≥ σmin(HJ); and (2) with constant probability,
we have cos(h⊥i , z) =

〈
h⊥i /∥h⊥i ∥2, z/∥z∥2

〉
< − 1√

d−j
.

For the first claim, we further decompose h⊥i = y1 + y2, where y1 ∈ null(HJ) ∩ span(H[n]\J\{i}), and
y2 ∈ null(HJ) ∩ null(H[d]\J\{i}) = null(H[n]\{i}). We have

σmin(HJ) = min
y∈Rm:∥y∥2=1

∥HJy∥2

≤ 1

∥y2∥2
· ∥HJy2∥2 (choose y = y2/∥y2∥2)

=
1

∥y2∥2
· |⟨hi, y2⟩| (y2 ∈ span(H[d]\{i}))

=
1

∥y2∥2
· |⟨y2, y2⟩| (y1 ⊥ y2)

= ∥y2∥2 ≤ ∥h⊥i ∥2. (∥h⊥i ∥2 =
√
∥y1∥22 + ∥y2∥22)

34



For the second claim, we can expand h⊥i /∥h⊥i ∥ into another set of orthonormal basis v′1:d−j of

null(HJ) and write z =
∑d−j

l=1 v′lz
′
l where z′1:d−j

iid∼ N (0, 1). Therefore, we have

cos(h⊥i , z) =
〈
h⊥i /∥h⊥i ∥2, z/∥z∥2

〉
=

z′1√
(z′1)

2 + ∥z′2:d−j∥22
.

Let δ = 1√
d−j

, we have

cos(h⊥i , z) < −δ ⇐⇒ z′1 < −
δ√

1− δ2
∥z′2:d−j∥2

⇐= z′1 < −1, and ∥z′2:d−j∥2 <
√
1− δ2

δ
.

Since z′1:d−j are iid Gaussian, the probability of both events are lower bounded by constants, so we
have

Pr[cos(h⊥i , z) < −δ] ≥ Pr[z′1 < −1] · Pr

[
∥z′2:d−j∥2 <

√
1− δ2

δ

]
≥ Ω(1).

Combining the two claims proves the lemma.

Claim J.6. With probability Ω(1) a search direction point z generated from the distribution
N (0m, η2jϕ

T
JϕJ) has ∥z∥2 ≤ O(η

√
m).

From the lemma and claim above, we get can show that a fraction Ω(1/m) of the search points
generated lie in a new, undiscovered polytope Pbnew and lie within distance ηj

√
m close x̂J which in

turn is O(αjm
3/σ) close to hb,bnew ( and in fact any boundary in Pα(x

∗)). So the points in Y lie at
a distance O(ηj

√
m+ αjm

3/σ). From the choice of ηj ∈ Θ(αjm
4/σ2), this is O(αjm

4.5/σ2).

Using these properties, we will now show that with a large enough number of search points, we can
approximate hb,bnew well. We construct the approximation in the following way. Let Y be a matrix
of the search points obtained by x̂H + zJ , where zJ is a Gaussian random vector in the search space
ŜJ . We will construct a hyperplane solving ĥ = argminh ∥hY T∥. We will now show that ĥ is a good
approximation to hb,bnew .

Lemma J.7 (Approximating a hyperplane). Suppose RandomSearch in the search space ŜJ =
{x : ĤJx = αj} generates d ∈ Θ(m2 logm) points. Let bnew be the undiscovered polytope with the
maximum number of search points. Let Y ∈ Rk×m be a matrix where the rows are all search points
in Pbnew with distance from x̂J ∈ O(η

√
m).

Then ĥ = argminh ∥hY t∥2 satisfies ∥ĥ− hb,bnew∥ ≤ α.

We will prove the accuracy of ĥ in approximating hb,bnew by finding and using a lower bound on the
minimum singular value of the matrix Y .

Let us denote the matrix of all search directions generated by random search by Z ∈ Rd×m. That is
each row zi ∼ N (0, η2jϕ

t
JϕJ). Let W ∈ Rk×m denote the subset of rows of Z corresponding to search

vectors with length at most O(ηj
√
m) and lying in Pbnew . W has a Ω(1/m) fraction of the rows in

Z. The matrix of close-to-boundary search points in Pbnew is Y where each row yi is x̂J + wi.
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The minimum singular value of Z ≥ η. Since W has Ω(1/m) fraction of subsets of Z, we can show
that the minimum singular value of W is also lower bounded. We show that σmin(W ) ∈ Ω(ηj

√
m/d)

which is Ω(ηj
√
1/(m logm)) by our choice of d.

Each row of Z is an isotropic random vector in a dimension p ≤ m. Fix some u ∈ Rp. Then, each
entry of Zu is normally distributed N(0, 1), i.i.d. With high probability, at least an 1/m-fraction
of the entries will be at least 1/(2m) in absolute value, from concentration. Now, we take a union
bound over an ϵ-Net over the set of all unit vectors. With high probability, this will hold for any
vector in the net. If this holds for any vector of the net, we can say that this holds for all unit
vectors and the proof would be complete.

Next note that σd−1(Y ) ≥ σd(W ) since Y −W is a matrix of rank 1.

Armed with the property that σmin(Y ) ≥ Ω(ηj
√

1/m logm), we will now show that ĥ = argmaxh ∥hY t∥2
is a good approximation for hb,bnew .

The true boundary hb,bnew also has a small ∥hb,bnewY t∥2 ≤ O(αjm
5.5/σ2) since points in Y are close

to the boundary. Let v denote the singular vector of Y t corresponding to the smallest singular value,
where ∥v∥2 = 1. Write ĥ = cos(θ)v + sin(θ)u for u perpendicular to v. Then,

∥ĥY t∥2 = cos2(θ)∥vY t∥2 + sin2(θ)∥uY t∥2 ≥ sin2(θ)σd−1(Y ).

Since ∥ĥY t∥2 ≤ O(α2
jm

9/σ4) is small, this means that sin(θ) is small. sin2(θ) ≤ O(αjm
6/σ2). Hence

∥ĥ− v∥ ≾ 2 sin θ ∈ O(
√
αjm

3/σ) is small. Similarly, ∥hb,bnew − v∥ is small. Hence ∥hb,bnew − ĥ∥ ∈
O(
√
αjm

3/σ) is small.

We have inductively shown how to find approximations of accuracy αj for the jth discovered
hyperplane where αj−1 ∈ O(αm3/σ)αj . To ensure that all hyperplanes are approximated to within
α level, we set α1 so that α1(m

3/σ)m ≤ α or α1 ∈ O(α · (σ/m3))m.

Guarantee that all polytopes in Pδ are discovered. Lemma J.5 shows that the algorithm
keeps finding a new polytope as long as the search space is non-empty and some polytope in Pδ(x∗)
is not yet visited. The only way the algorithm can terminate without finding some polytope in
Pδ(x∗) is if it finds m polytopes that are not a superset of Pδ(x∗).

All the polytopes discovered have points at distance αjm
3/σ from x∗ and hence are polytopes in

Pαjm3/σ(x
∗). By choosing αj ’s so that each αjm

3/σ ∈ ω(R2), we have the property that all the
discovered polytopes belong to the set PR2(x

∗). By Lemma F.5, there are at most m polytopes in
PR2(x

∗).

J.5 Proof of Theorem C.1

Theorem C.1 (Lower Bound). Assume a repeated game between a learner, who employs Fictitious
Play, and an optimizer who does not know the learner’s utility. Let n be the number of actions for
the learner, and let ϵ ∈ (0, 1/3). Assume that n ≥ 1/ϵ2. Let m be the number of actions for the
optimizer and assume that m ≥ 1/ϵ5. Then, there exists a distribution over games such that for any
randomized algorithm used by the optimizer, the expected number of iterations required to find an
ϵ-approximate local Stackelberg equilibrium is at least eC/ϵ, where C > 0 is a universal constant.

Further, this lower bound holds under smoothed analysis, when each entry in the learner’s utility
matrix is perturbed by a small constant and when Assumption F.3 is satisfied.
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Proof of Theorem C.1. Let ℓ be the largest integer such that 1/(2ℓ+ 1) ≥ ϵ. We can assume that
the optimizer has n = ℓ2 actions and the learner has m = ℓ3 + 1 actions: if they have more actions
then it is easy to guarantee that they are not played, by constructing a suitable game. We will prove
the version without the smoothed-analysis. However, it is clear from the proof that it still holds
even when the utilities are perturbed as claimed above.

Assume that the optimizer has n actions. We want to define the optimizer’s utility such that, in
order to find a local optima, a lot of time has to be passed until the optimizer succeeds. We notice
that the optimizer’s utility is defined on the simplex ∆n, and it is piecewise linear: the simplex is
split into polytopes, defined by the learner’s best responses. For intuition, we explain now how these
polytopes look like. First, there’s some path of length ℓ, where ℓ < n, consisting of distinct vertices
v1− · · · vℓ, where each vi ∈ [n], and v1 = 1. The optimizer doesn’t know the path, and the only local
optima of the function would be if the optimizer plays deterministically the action vℓ. The optimizer
would have to find vℓ in order to find a local optima, and this will take a long time. Here is how we
define the polytopes such that the only local optima is vℓ. First, for each edge in the path, there’s
some polytope: namely, for each i = 1, . . . , ℓ− 1, there’s a polytope around the edge connecting vi
with vi+1. We denote this polytope Pi and it is approximately defined as

Pi = {x ∈ ∆n : xvi + xvi+1 ≥ max{0.9, xvi−1 + xvi , xvi+1 + xvi+2} }

In the remainder of the the simplex, there will be the polytope P0 defined as

P0 = {x ∈ ∆(n) : ∀i ∈ [ℓ− 1], xvi + xvi+1 ≤ 0.9}

The optimizer’s utility is defined such that for i < j ∈ {0, . . . , ℓ} it is higher in Pj compared to Pi.
Within the polytopes the optimizer’s utility is as follows: in P0 the utility is higher as x approaches
v1 = 1 (i.e. approaches the pure action v1 = 1). For i > 1, the utility is higher as x approaches vi+1.
Concretely, the learner’s utility is defined as follows: In x ∈ Pi it equals (2i+ xvi+1)/(2ℓ+ 1). It is
trivial to see that there’s not 1/(2ℓ+ 1)-approximate local Stackalberg except for x in the vicinity of
vℓ. Indeed, within each Pi the local opt is only vi+1. And further, for each i < ℓ, vi is not a local opt
because vi borders the polytope Pi whose local optima is vi+1. Consequently, the only local opt is vℓ.

Now, we define the optimizer’s actions and the utility functions such that the optimizer’s utility is
as defined above. Recall that the optimizer knows their own utility, however, they don’t know the
path. Consequently, for any potential edge vi − vi+1 there should be a potential polytope. Some
of the potential polytopes will not exist, however, the optimizer would not know that in advance.
Concretely, for each “potential polytope” there would be an action of the learner. First, for the big
polytope P0, there will be an action of the learner that we denote as 0. Further, for any r ∈ [n],
s ∈ [n] \ {r} and i = 1, . . . , ℓ, we define an action of the learner (r, s, i). We want to ensure the
following:

• If vi = r and vi+1 = s then the polytope Pi will correspond to the optimizer playing action
(r, s, i). Otherwise, this action will correspond to no polytope.

• If this action does correspond to Pi then we want the optimizer’s utility to be as defined above.

To achieve the following, we first define the learner’s utility. For action 0 of the learner, and any
action a of the optimizer, define

u2(a, 0) = 0 .

This corresond’s to the “default” polytope P0. For any (r, s, i) such that vi ̸= r or vi+1 ̸= s, we want
to ensure that there’s no polytope corresponding to this action, hence we define

u2(a, (r, s, i)) = −1
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for any action a of the optimizer, and this ensures that the learner will always prefer action 0 over
(r, s, i). Next, we want to define the learner’s utility on (r, s, i) such that vi = r and vi+1 = s such
that the region when the learner plays (r, s, i) corresponds to the polytope Pi. We define the learner’s
utility as

u2(a, (r, s, i)) =

{
1/9 a ∈ {r, s}
−1 a /∈ {r, s}

This definition of vL yields the polytopes Pi as defined above, namely, P0 is the region where the
learner plays action 0 and for i > 0, Pi is exactly the region where learner plays (vi, vi+1, i).

Now, we need to define the optimizer’s utility to align with the definitions above. Recall that we
want the optimizer’s utility to be (xvi+1 + 2i)/(2ℓ+ 1) in each region Pi. Starting at P0, we define:

u1(a, 0) =

{
1/(2ℓ+ 1) a = v1

0 a ̸= v1

For i > 0, define

u1(a, (vi, vi+1, i)) =

{
(1 + 2i)/(2ℓ+ 1) a = vi+1

2i/(2ℓ+ 1) a ̸= vi+1

For all (r, s, i),

u1(a, (r, s, i)) =

{
(1 + 2i)/(2ℓ+ 1) a = s

2i/(2ℓ+ 1) a ̸= s

It is easy to see that this yields the correct utility function.

Now, we want to prove that it takes a long time for the optimizer to get to vℓ. First, recall that x(t)

is the average optimizer’s history till time t. Notice that ∥x(t) − x(t+1)∥1 ≤ 1/(t+ 1). Denote by
e1, . . . , ek the indices of the polytopes visited throught the algorithm, except for polytope P0: e1 is
the first visited polytope, e2 is the second etc. Denote by ti the first time that ei was visited such
that t1 ≥ 1. We want to argue that ti+3 ≥ 1.8ti. Indeed, notice that each Pi has two neighboring
polytopes (except for P0): Pi−1 and Pi+1. Consequently, one of Pei+1 , Pei+2 , Pei+3 does not neighbor
Pei . Denote by 0 = t0 < t1 < · · · < tk the iterations such that for i ≥ 1: ti is the first t > ti−1 such
that x(t) has some coordinate that’s is greater than 0.45 for the first time, namely, such that there’s
some j such that (x(t))j ≥ 0.45 and x

(t′)
j < 0.45 for all t′ < t. We want to prove that ti+2 ≥ 1.35ti.

To show that, first, by definition, either the total variation between x(ti) and x(ti+1 is at least 0.175
or between x(ti) and x(ti+2 : indeed, in x(ti), x(ti+1 and x(ti+2 there are distinct coordinates that
surpass 0.45 for the first time: for one of i+ 1 and i+ 2 this coordinate has to have a weight of at
most 0.55/2 = 0.275 at time t = ti, which implies a total variation of at least 0.45− 0.275 = 0.175.
Further, notice that the total variation between x(t) and x(t+1) is at most 1/(t+ 1) by definition of
x(t) (it is the average of everything up to time t. Consequently, it takes at least 0.175ti iterations
until reaching some x(t) whose total variation is 0.175 from ti, which means that ti+2 ≥ 1.175ti as
claimed. This implies that the number of iterations is eΩ(k) and we would like to lower bound k.

Denote by ui the coordinate that’s at least 0.45 for the first time at ti. We assume that the algorithm
stops when reaching close to a local optima which is at vℓ hence there must be some i ≤ k such that
ui = vℓ. Denote by I the set of indices i such that ui is not on the path, namely

I = {i : ui /∈ {v1, . . . , vℓ}}
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Further, denote by J the set of times i that ui ̸= v1 is on the path but no neighbor of ui was visited
before:

J = {i : ∃j > 1 s.t. ui = vj and ∀i′ < i, ui′ /∈ {vj−1, vj+1}}
Now, we consider I and J as random variables. The randomness is both wrt the randomness of the
optimizer’s algorithm and wrt to a random choise of a path v1 − · · · − vℓ which is taken uniformly at
random from all paths starting at v1 = 1 whose all vertices are distinct and whose elements are [n].
Whenever J = ∅, then, we have that k ≥ ℓ: indeed, recall that vℓ ∈ {u1, . . . , uk} and if J = ∅ this
means that all vertices v1, . . . , vℓ−1 have to appear w.p. 0.45 before vℓ. So, if Pr[|J | = ∅ ≥ 0.5] then
we have that the expected number of iterations run by our algorithm is at least eΩ(k) ≥ eΩ(ℓ).

Now assume otherwise, that Pr[|J | ≠ ∅] ≥ 0.5. In this case, w.p. 0.5, there’s some node ui
such that no neighbor has appeared before w.p. 0.45. Since the path is uniformly at random,
E[|I|] ≥ Ω(n/ℓ)E[|J |]: whenever that algorithm visits a node that none of its neighbors appeared
on the path, the probability that this new node is on the path is at most O(n/ℓ), assuming that
n > 10ℓ. Hence, in case that E[|J |] ≥ 0.5 we have that E[|I|] ≥ Ω(n/ℓ) and E[k] ≥ Ω(n/ℓ). If we
assume that n ≥ ℓ2, this is eΩ(ℓ), as required.

J.6 Proof of Theorem D.1

Theorem D.1 (Lower bound on the minimum singular value). Let U2 ∈ [0, 1]m×n be an arbitrary
utility matrix of the agent, and let U2 be a Gaussian perturbation of U2 with variance σ2. Then
the resulting augmented constraint matrices of the perturbed utility matrix satisfies that for σ =

Θ
(

σδ

m
5
2 2n

)
, Assumption F.2 holds with probability at least 1− δ.

Proof of Theorem D.1. We first show that it suffices to establish a lower bound on the minimum
singular values of all k × k submatrices of the un-augmented constraint matrices Hb, where k ≤ m.
In particular, we will show that ∀b ∈ B,

Pr
(
∀K ∈ Sm(Gb), σmin(K) ≥ σ

)
≥ Pr

(
∀K ′ ∈ S≤m(Hb), σmin(K

′) ≥ m · σ
)

(1)

Let Gb\ =
[
Im
1m

]
be the augmented constraints to account for the simplex constraints x ≥ 0 and

1Tx = 1. We establish Equation (1) by proving the following two claims:

1. If a square submatrix K ∈ Sm(Gb) contains r rows from the nonnegativity constraints Im, then
there exists a (m− r)× (m− r) submatrix K ′ ∈ Sm−r(K), such that σmin(K) ≥ 1

2σmin(K
′);

2. For a submatrix K ∈ Sm(Gb) that contains the row 1m, its σmin(K) can be viewed as a
Gaussian perturbed matrix.

Proof of the first claim. Without loss of generality, we can assume the nonnegativity constraints
are located in the first r rows and first r columns of K, i.e., K takes the following form,

K =

[
Ir×r 0r×(m−r)

L K ′

]
,

where L ∈ R(m−r)×r and K ′ ∈ R(m−r)×(m−r) is a square sub-matrix of K. We will show that
σmin(K) ≥ 1

mσmin(K
′) by proving that for all m-dimensional vector x ∈ Rm where ∥x∥2 = 1, we

have ∥Kx∥2 ≥ 1
mσmin(K

′).

39



We can write x =

[
y
z

]
, where y ∈ Rr and z ∈ Rn−r. We have Kx =

[
y

Ly +K ′z

]
. Consider the

following two cases:

• If ∥y∥2 ≥ 1
m · σmin(K

′), then ∥Kx∥2 = ∥y∥2 + ∥Ly +K ′z∥2 ≥ ∥y∥2 ≥ 1
mσmin(K

′), as desired.

• If ∥y∥2 < 1
m · σmin(K

′), we have ∥z∥2 ≥ 1− 1
m . In this case,

∥Kx∥2 = ∥y∥2 + ∥Ly +K ′z∥2 ≥ ∥y∥2 + ∥K ′z∥2 − ∥Ly∥2
≥ σmin(K

′) · ∥z∥2 − (∥L∥2 − 1) · ∥y∥2

≥ σmin(K
′) · (1− ∥y∥2)−

(m
2
− 1
)
· ∥y∥2 (∥L∥2 ≤

√
r(m− r) ≤ m

2 )

≥ σmin(K
′) ·
(
1− σmin(K

′)

m
−
(m
2
− 1
)
· 1
m

)
(∥y∥2 ≤ σmin(K

′)/m)

= σmin(K
′) ·
(
1

2
+

1− σmin(K
′)

m

)
≥ σmin(K

′)

2
≥ σmin(K

′)

m
.

This finishes the proof of the first claim.

Proof of the second claim. Let K =

[
1m
K ′

]
be a submatrix of Gb that contains the all-1 row

vector. Since the Gaussian distribution is rotation invariant, we can rotate all the rows of W to
V ·W , where V is a rotation matrix. The resulting matrix VW satisfies that (1) the first row
equals c · 1m, where c

√
m is the length of the first row that follows the Chi distribution with m

degrees of freedom; and (2) the distribution of the remaining m− 1 rows does not change, i.e., their

entries remains to be i.i.d. Gaussian random variables. We can therefore view K =

[
1m
K ′

]
as some

fixed matrix perturbed by a Gaussian matrix with variance c2σ2, where c2 ≥ 1 − O

(√
log(1/δ)

m

)
with probability at least 1− δ. As a result, the minimum singular value of K also follows from the
characterization in Lemma J.8.

Union bound on all submatrices Finally, we are ready to bound the tail probability of the
minimum singular value. From Equation (1), it suffices to consider all the square submatrices of Gb

with size at most m, and show that they all have minimum singular value lower bounded by σm.
From Lemma J.8, for a given b ∈ B, r ≤ m and K ∈ Sr(Hb), we have

Pr (σmin(K) ≤ σm) ≤ O

(
m3/2

σ
· σ

)
.

Therefore, taking a union bound for all such submatrices, we have

Pr
(
∃b ∈ B, r ≤ m,K ′ ∈ Sr(Hb), σmin(K

′) ≥ m · σ
)
≤ O

(
m

5
2

σ
· σ ·

(
n

≤ m

))
≤ O

(
m

5
2 2n

σ
· σ

)
.

Finally, setting the right hand side probability to be δ, we have established that

Pr

(
∀b ∈ B, ∀K ∈ Sm(Gb), σmin(K) ≥ σδ

m
5
2 2n

)
≥ 1− δ.
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The proof is thus complete.

Lemma J.8 (Theorem 3.3 of (Sankar et al., 2006)). Let A ∈ Rm×m be an arbitrary square matrix,
and let A be a Gaussian perturbation of A of variance σ2. Then

Pr (σmin(A) ≤ x) ≤ 2.35

√
m

σ
· x.
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